

Aeolus

2023 DRAGOL SMPOSIUM 3rd YEAR RESULTS REPORTING 11-15 SEPTEMBER 2023

PROJECT ID. 57192

REMOTE SENSING OF CHANGING COASTAL MARINE ENVIRONMENTS (RESCCOME)

WEDNESDAY, 12 SEPTEMBER 2023, S.2.1: COASTAL ZONES AND OCEANS

ID. 57192

PROJECT TITLE: REMOTE SENSING OF CHANGING COASTAL MARINE ENVIRONMENTS (RESCCOME)

PRINCIPAL INVESTIGATORS: MARTIN GADE & LI XIAO-MING

CO-AUTHORS: MERETE BADGER, CHARLOTTE HASAGER, ABDALMENEM OWDA, SEBASTIAN PETERS, SIMON SCHÄFERS, WANG WENSHENG, ZHANG DI, ZI NANNAN

PRESENTED BY: MARTIN GADE

Objectives:

- Exploitation of Copernicus Sentinels, ESA, ESA TPM and Chinese EO data: better understanding of the ways, in which coastal ecosystems are exposed to, and react on, various anthropogenic impacts
- Scientific exchange: bi- or multi-lateral research or educational activities, joint Sino-European research packages
- Publication of co-authored results: joint publications at the Midterm and Final Dragon 5 Symposia, and in leading peerreviewed scientific journals
- Training to young European and Chinese scientists: webinars, excursions, educational courses, and summer schools

Contribution of the Partners:

	European partners					Chinese partners				
Research Packages:	UHH	UoA	UoB	UiT	DTU	AIRCAS	OUC	NSOAS	HNTOU	ULT
57192-1: Intertidal regions										
57192-2: Offshore wind farms										
57192-3: Offshore oil pollution			1							1
57192-4: Coastal pollution	_						_			
57192-5: Coastline changes										

Cross-Cutting Themes:

Synergism of RS data					
Processing of Big Data					
Coastal stress factors		_			
Education of Young Scientists					
Dissemination and outreach					

ReSCCoME: EO Data Delivery

ESA /Copernicus Missions	No. Scenes	ESA Third Party Missions	No. Scenes	Chinese EO data	No. Scenes	
1. Sentinel-1	>1000	1. TerraSAR-X	>10	1. GF-1	400 PMS	
2.		2. ALOS	5		400 WEV Cam	
3.		3. Radarsat-2	2	2. Gf-3	12 Strip Dual	
4.		4.		3. GF-6	400 WFV Multi	
5.		5.		4. SDGSAT-1	>500 GLI >2600 TIS	
6.		6.				
Total:		Total:	>17	Total:	>4300	
Issues:		lssues:		Issues:		

Through ESA's Sentinel Hub and from local archives at UHH and DTU.

From local archives at UHH.

SDGSAT-1 (launched Nov 2021) freely available: https://www.sdgsat.ac.cn/

GF-1, GF-3, and GF-6 data available: https://data.cresda.cn/

Name	Institution	Poster title	Contribution including period of research
Simon Schäfers	UHH	A Neural Network for the Detection of Water Lines	MSc student, since 2022
Sebastian Peters	UHH	N/A	BSc student, since 2021
Abdalmenem Owda	DTU	N/A	PhD student, since 2021

Name	Institution	Poster title	Contribution including period of research
Zhang Di	UHH	Classification of Intertidal Flat Surfaces by Means of Deep Learning	PhD student, 2020-2022
Zi Nannan	AIRCAS	Oceanic Eddy Detection from SAR Imagery Based on Deep Learning Network	PhD student, since 2021
Qiu Yujia	AIRCAS	Retrieval of Sea Ice Drift in the Arctic Based on Sequential Sentinel-1 SAR Data	PhD student, since 2020
Huang Bingqing	AIRCAS	N/A	PhD student, 2019-2023
Jia Tong	AIRCAS	N/A	PhD student, 2018-2022

Dragon 5 3rd Year Results Reporting

ReSCCoME: Remote Sensing of Changing Coastal Marine Environments

Longterm changes – example: Chinese coast:

Dragon 5 3rd Year Results Reporting

ReSCCoME: Remote Sensing of Changing Coastal Marine Environments

Full archive of wind maps from DTU:

https://science.globalwindatlas.info/ (select 'Offshore wind fields in near-real-time')

JF FILTER

2021/06/18 - 09:56:51

2021/06/18 - 09:55:36

YYYY-MM-DD

36.115059

124.451165

DATE TO

LATITUDE TO

LONGITUDE TO

OAD DATA

NEXT .

2021/06/18 - 09:56:26

2021/06/18 - 09:55:11

DATE FROM

LATITUDE ERON

PREVIOUS

In-situ Data Measurements and Requirements:

- Intertidal Flats: surface roughness, sediments, moisture, habitats
- Offshore Wind Farms: atmospheric and oceanic parameters
- Offshore Oil Pollution: surface films, environmental conditions
- Coastal Pollution: plastic debris, waves & currents, bathymetry
- Coastline Changes: waterlines, water level, bathymetry

ReSCCoME: Level & Training of Young Scientists

Training Classes at AIRCAS, Bejing, and TJU, Tianjin

Field Data Collection Campaigns and Periods:

• UHH student excursions on the German North Sea coast

OFFSHORE WIND FARMS

57192 - ReSCCoME

SAR Wind Retrieval and Wakes for Offshore Wind Energy Applications in East China

Credit: Abdalmenem Owda

57192 – ReSCCoME – Offshore Wind Farms

Wind wakes:

- Defined as wind-speed reduction at downwind side of offshore wind farms (OWFs)
- Decrease efficiency of OWFs
 - reduce wind-power generation
 - increase load effects on wind turbines

SAR:

- Provide wind speed (10 m) and wakes deficit at high spatial resolution (min. 500 m)
- Wind wakes cause high local radar contrast at downwind sides of OWFs

57192 – ReSCCoME – Offshore Wind Farms

Study area on the Chinese coast

57192 – ReSCCoME – Offshore Wind Farms

CMOD5.N

SAR Wind retrieval for offshore wind energy applications in E China

Sentinel 1A-level 1-GRDH was taken at 13^h June 2022 13:09:55 *https://ovl.oceandatalab.com/*

Wind speed and power variation near coast

Wind speed and power variation along the black line (left). More wind speed reduction and power losses getting closer to the coast

martin.gade@uni-hamburg.de

18

Wind speed deficit caused by OWFs

57192 - ReSCCoME

Classification of Intertidal Flat Surfaces by Means of Multi-Sensor Data

Credit: Zhang Di, Wang Wensheng

Wadden Sea: intertidal flats on the European North Sea

Intertidal flats:

- ~ 10 km offshore, exposed during low tide
- Danish-German-Dutch North Sea coast
- Fine sediments, partly vegetated, habitats
- Strong morphodynamics
- Invasive species: Pacific Oyster (*Crassostrea gigas*)
- National Parks, UNESCO World Heritage (2009)
- Frequent monitoring mandatory
- SAR, because of usually high cloud cover

Traditional classification based on optical data

Sediment classes derived from Optical Satellite data

5 surface classes: sand mixed sand/mud mud bivalves bright sand

6 km × 6 km

- Linear spectral unmixing
- Decision tree

Data source: Landsat-8 Classification: © Brockmann Consult

Discrimination of Surface Types — FCDK-RF Algorithm

FCDK-RF

- Freeman-Durden:
 - FD_odd, FD_vol, FD_dbl;
- Cloude-Pottier:
 - \succ Entropy H, alpha angle α , Anisotropy A;
- Double-Bounce Eigenvalue Relative Difference (DERD);
- Kennaugh Elements (D3 and P)
- Classification according to Random Forest (RF) theory.

EXTENSION

- Partly Polarimetric Mode (HH with VV);
- Sediments, Habitats, Bivalve (oysters and mussels) beds.

	AL2 (L·	-Band)	RS2 (C	-Band)	TSX (X-Band)		
	PA (%)	UA (%)	PA (%)	UA (%)	PA (%)	UA (%)	
Sandy sediments	86.7	85.6	89.1	86.2	81.7	79.8	
Mixed sediments	86.8	87.2	88.0	86.7	81.0	80.9	
Open water	86.5	88.5	88.9	87.6	86.2	87.0	
Bivalve beds	89.0	91.8	90.9	91.3	91.6	92.7	
OA (%)	86.2		88	8.7	85.9		

martin.gade@uni-hamburg.de

TE-UNet: Texture Enhancement UNet

25

martin.gade@uni-hamburg.de

Land

57192 – ReSCCoME – Intertidal Flat Surfaces

Classification Based on Deep Learning Using SAR and Optical Data

SAR Images

(RS2 VV Channel)

Training: RS2

Testing: RS2

Seagrass

Reference Classification

CP

FDI

Bivalves Beach Water Sediments Thin Coverage

FDCPI FDCP

SAR Images (ALOS2 VV Channel)

Training: ALOS2

Testina: ALOS2

Training: RS2

Testing: ALOS2

Training: ALOS2 Testing: RS2

lixiaoming@aircas.ac.cn

6 km × 6 km

martin.gade@uni-hamburg.de

57192 - ReSCCoME

On the Use of SAR Data to Monitor Coastal Erosion and Morphodynamics in Intertidal Areas

Credit: Sebastian Peters, Simon Schäfers

Coastal erosion caused by storm surges

Norderney 2022

martin.gade@uni-hamburg.de

Wadden Sea waterlines from Sentinel-1 SAR data

original SAR image

detected edges

binary land-water map

final waterlines

martin.gade@uni-hamburg.de

Wadden Sea topography from waterlines

Classification aided by a neural network

Convolutional Neural Network (CNN) : U-Net

Classification aided by a neural network

Sentinel-1A SAR image 19 May 2020

additional input water – transition – land

classification output land / water mask

refined output after floodfilling

SUB-MESOSCALE OCEANIC EDDIES

Oceanic Eddy Detection from SAR Imagery Based on Deep Learning Network

Credit: Zi Nannan

Overall architecture of EOLO

The automatic detection network of EOLO

Eddy automatic detection network structure based on YOLO model (EOLO)

EOLO outputs detected eddies with their center and width-height informationing@aircas.ac.cn

Geographic information extraction of detected eddies

Eddy center: (x_a, y_a) Diameter: AB + AD

Geographic Affine Transformation model

Convert to row and column numbers to the corresponding geographic coordinates $(x_a, y_a, w_a, h_a) \rightarrow$ longitude and latitude of eddy center and eddy

-diameter -

Adaptability of EOLO in different marginal seas

Red Sea (Precision = 0.968)

Baltic Sea (Precision = 0.957)

Western Mediterranean Sea (Precision = 0.965)

martin.gade@uni-hamburg.de

Spatial characteristics of ocean eddies in the Western Med

Notable differences in the spatial distributions of ocean eddies detected by SAR and RA. martin.gade@uni-hamburg.de lixiaoming@aircas.ac.cn

Spatial characteristics of ocean eddies in the Western Med

The reason of the spatial distribution discrepancy:

5°E

6°E

Cases of small eddies

merging into large eddies

20210204

3°E

4°E

30'

30'

^{30'}2°E

Due to the limitation of spatial resolution, their sizes are remarkably different;

Also due to the limitation of spatial resolution, the eddies ٠ detected by gridded map merging of multi-RA along-track data may be the results of small-scale ones merging into larger ones.

- Gade, M., M. Badger, K. Dimitriadou, X. Li, A. Owda, S. Peters, S. Schäfers, D. Zhang, 2023: "Remote Sensing of Changing Coastal Marine Environments – a Midterm Report", *Trans. Geospatial. Inform. Serv.*, to be resubmitted.
- Zi, N., X.-M. Li, M. Gade, H. Fu, 2023: "Ocean Eddy detection based on YOLO deep learning algorithm by Synthetic Aperture Radar data", *Remote Sens. Environ.*, under review.
- Zhang, D., M. Gade, W. Wang, H. Zhou, 2023: "EddyDet: A Deep Framework for Oceanic Eddy Detection in Synthetic Aperture Radar Images", *MDPI Remote Sens*, revised.
- Zhang, D., W. Wang, M. Gade, 2023: "TENet: A Texture-Enhanced Network for Intertidal Sediments and Habitats Classification in Multi-band PolSAR Images", *IEEE Trans. Geosci. Remote Sens.*, under review.
- Gade, M., S. Peters, S. Schäfers, 2023: "On the Use of SAR Data to Monitor Coastal Erosion and Morphodynamics in Intertidal Areas", *MDPI Coasts*, in preparation.

ReSCCoME Outlook for Year 4

- Continuation of presented work
- Intensify field work, where needed
- Initiate new / foster existing collaborations
- Summer School together with partner project

06511

谢谢

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

ris

THEN A MIRACLE

4.20