

2023 D. A. SMPOSIUM 3rd YEAR RESULTS REPORTING 11-15 SEPTEMBER 2023 [PROJECT ID. 59198]

ABSOLUTE CALIBRATION OF EUROPEAN & CHINESE SATELLITE ALTIMETERS ATTAINING FIDUCIAL REFERENCE MEASUREMENTS STANDARDS

Dragon 5 3rd Year Results Project

WEDNESDAY, 13/SEPT/2023: 9:00AM - 10:30AM

ID. 261

PROJECT TITLE: ABSOLUTE CALIBRATION OF EUROPEAN & CHINESE SATELLITE ALTIMETERS ATTAINING FIDUCIAL REFERENCE MEASUREMENTS STANDARDS

PRINCIPAL INVESTIGATORS: [STELIOS P. MERTIKAS; MINGSEN LIN]

CO-AUTHORS: [STELIOS P. MERTIKAS, MINGSEN LIN, DIMITRIOS PIRETZIDIS, COSTAS KOKOLAKIS, CRAIG DONLON, CHAOFEI MA, YUFEI ZHANG, YONGJUN JIA, BO MU, XENOPHON FRANTZIS, ACHILLES TRIPOLITSIOTIS, AND LEI YANG]

PRESENTED BY: [DR. MU BO(NSOAS)]

Project's Objectives

- Calibrate Satellite altimeters of Europe (S3/S6/CS2) & China (HY-2):
- - ESA Permanent Facility for Altimetry Calibration in Crete, Greece;
- - Chinese Altimeter Calibration Cooperation Plan.
- Results of Calibration to FRM Standards:
- - To absolute reference signals,
- - Traceable to SI-standards,
- - Different & redundant techniques (sea & land),
- - Various processes, diverse instrumentation, settings etc.
- Report FRM Uncertainty for Satellite Cal/Val Results
- Analyse Performance Against Other Missions.

Dragon 5 Third Year Results Reporting

NSOAS

Dragon Altimeter Data Used:

European Satellite Altimeters:

Sentinel-6A (2021)

Chinese Satellite Altimeters:

HY-2B (2018)

HY-2C (2020)

HY-2D (2021)

Gavdos/Crete Permanent Cal/Val Facilities

NSOAS

Transponders at ESA PFAC, Crete

Crete (CDN1 Transponder)

- Multiple Cross-over (S3A, S3B, Jason-3, S6, AltiKa, SWOT),
- Low clutter,
- Cross-calibration,
- Crystal clear signal of S3 Signals.

Gavdos (GVD1 Transponder)

S3A, Sentinel-6 (Ascending & Descending), sea-surface Cal/

Gavdos/Crete Permanent Cal/Val Facilities

NSOAS

Sea-surface infrastructure, Crete

SUG1

GVD1

Gavdos

CRS1

CRS1 Cal/Val site (South-West Crete)

CRS1 calibration site in southwest of Crete for the Chinese HY-2

SUG1 Cal/Val site (South Crete)

Gavdos Cal/Val site

RDK1 Cal/Val site (South Crete)

Gavdos/Crete Permanent Cal/Val Facilities @esa

NSOAS

Transponders and sea surface Cal/Val sites at ESA PFAC, Crete

- ✓ 4 sea-surface & 2 transponder Cal/Val sites,
 - ✓ Crossovers with S3A, S3B, JA3, S6, CryoSat-2, AltiKa, SWOT,
 - ✓ Frequent (5 days), Redundant, Confident results, Directional errors
 - ✓ Corner Reflectors.

Simultaneous Transponder & Sea-Surface Cal/Val

China Altimetry Calibration Cooperation Plan

ID	Cal/Val Site	Latitude	Longitude	
QLY	Qianliyan (Qingdao)	121.385E	36.267N	
ZMW	Zhimaowan (Bohai Sea)	119.920E	40.009N	
Wanshan	Dangantou	114.303E	22.059N	
Wanshan	Zhiwan	114.147 E	21.994	
Wanshan	Wai Lingding	114.029E	22.108N	
	ID QLY ZMW Wanshan Wanshan Wanshan	IDCal/Val SiteQLYQianliyan (Qingdao)ZMWZhimaowan (Bohai Sea)WanshanDangantouWanshanZhiwanWanshanWai Lingding	IDCal/Val SiteLatitudeQLYQianliyan (Qingdao)121.385EZMWZhimaowan (Bohai Sea)119.920EWanshanDangantou114.303EWanshanZhiwan114.147 EWanshanWai Lingding114.029E	

· e esa

National Satellite Ocean Application

WRAGED Fiducial Reference Measurements for Altimetry COSA

ESA Effort to:

- Earth observation reliable in the long term,
- Comparable world-wide,
- Impervious to instrument, setting, location, conditions,
- Build up objective and reliable record for Climate Change,
- Achieve Uniform, Absolute Standardization of Earth observation,

Why Need to Do that?:

- Place Trust on Earth data we produce;
- **Communicate Correct information to Public (e.g., warnings);**
- **Right decisions for Policies in climate change & sea level change.**

How to Achieve FRM for Altimetry Calibration?

- **Connect Cal/Val to undisputed ground references,**
- Evaluate each constituent contributing to Cal/Val uncertainty,
- Uncertainty on documented calibrations at reference sites,
- Uncertainty on metrology standards (speed of light, atomic time).

HY-2B and CRS1 & RDK1 Cal/Val sites, Crete

HY-2B SSH Bias, Cycles 19-86 Ascending Pass A.161, Gavdos/RDK1 Cal/Val

FRM Uncertainty : ± 50 mm

GAVDO

GeoMatLa

GeoMatLab

- The HY-2B altimeter have been calibrated:
 - With uniform, standardized procedures, and best practices;
 - Upon trusted & indisputable ground reference standards;
 - At both Cal/Val infrastructures in Europe & China.

Cal/Val Site	Bias
Zhiwan island, China	–38 mm ± 3 mm
Qianliyan, China	+4 mm ± 4 mm
Wanshan, China	+12 mm ± 6 mm
CRS1, Crete, Europe	+9 mm ± 5 mm
RDK1, Crete, Europe	+8 mm ± 8 mm
GVD1, Crete, Europe	+2 mm ± 9 mm

Constituents of Uncertainty in Cal/Val Results

6, 914		ł		Ĩ						
Site Selection	 Repeat Cycle Across-track distance Land contamination Water Depth Directional errors Multi-mission Reference surfaces Accessibility Security Ground stability Geodetic ties GNSS visibility Power supply & Communications 	Absolute positioning	 Diverse GNSS satellites Diverse receivers & antennas Absolute GNSS antenna calibration 30s sampling rate 20 Hz high-rate ring buffer Reference frames Relative & absolute positioning Height diffs <2mm Diverse positioning systems (i.e., GNSS, DORIS, SLR, etc.) UTC time for time tagging At least 2-3 years of continuous operation. 	Atmospheric Delays	 GNSS-Derived ionospheric & zenith tropospheric delays at the time of satellite overpass Operation of meteo sensors Validation w.r.t. global/regional modeling Radiosondes, photometers, radiometers measurements OLCI observations. 	Geophysical effects	 Models for earth tides (solid earth, ocean tidal loading, pole tide) shall follow IERS conventions Establish reference geoid, MSS, MDT surfaces Validate reference surface with local/regional marine/aerial/terrestrial surveys 	Water level determination	 Multiple (at least three) tide gauges of diverse measuring principle (radar, acoustic, pressure, floating). Geodetic ties between GNSS and tide gauge sensors via spirit leveling surveys with ± 1mm Calibration certificates from manufacturers for repeatability, reproducibility, hysteresis, drift, non- linearity, etc. Validation of instrument's performance, by the Cal/Val site operator, prior its permanent installation Field validation experiments to be conducted at least every 6 moths using a reference instrument Relative field calibration between operating tide gauges At least 1 hour of water level reading centered to the satellite overpass time of 	

closest approach.

Description	CRS1	RDK1	Wanshan
Tide-gauge sensor	$\pm4~{ m mm}$	\pm mm	$\pm 1 \text{ mm}$
Repeatability	± 2.53 mm	± 2.53 mm	± 2.53 mm
Zero-point reference	± 2.50 mm	$\pm 2.50 \text{ mm}$	± 2.50 mm
GNSS receiver	± 3.46 mm	± 3.46 mm	$\pm 3.50 \text{ mm}$
GNSS repeatability	$\pm 0.08~{ m mm}$	$\pm 0.09 \text{ mm}$	± 0.10 mm
GNSS ARP	$\pm 4.04~\mathrm{mm}$	± 4.04 mm	$\pm 5.00 \text{ mm}$
GNSS solution	$\pm 0.08~{ m mm}$	± 0.13 mm	± 0.10 mm
GNSS velocity	± 1.96 mm	± 4.55 mm	± 2.50 mm
GNSS integration	± 3.75 mm	\pm 3.75 mm	± 3.75 mm
Control ties	$\pm 0.09~\mathrm{mm}$	± 0.10 mm	± 0.28 mm
Reference surfaces	$\pm 42.00 \text{ mm}$	$\pm 47.00 \text{ mm}$	$\pm 50.00 \text{ mm}$
Final Water level	$\pm 7.50 \text{ mm}$	± 7.50 mm	$\pm 7.50 \text{ mm}$
Geoid slope	± 5.77 mm	± 5.77 mm	± 3.50 mm
Processing	± 0.29 mm	± 0.29 mm	± 0.29 mm
Unaccounted effects	± 11.55 mm	± 11.55 mm	± 11.55 mm
Uncertainty budget	±45.41 mm	±50.44 mm	±52.66 mm

NSOAS

- For HY-2B, the results of European and Chinese sites are close;
- The FRM uncertainty of CRS1, RDK1 and Wanshan is reported;
- Continue Calibration of European and Chinese altimeters;
- Analyze FRM Uncertainty at Chinese Cal/Val;
- Extend Cal/Val to HY-2C, HY-2D, S6, ... Cal/Val;
- Joint Journal Publication published@ Remote Sensing (2023).

