

HJ-1AB

2023 DRAGON 5 SYMPOSIUM

Beijing-2

Sentinel-

Sentinel-3

Sentinel-5p

∆enlus

Large-Scale Satellite Image Time Series : Learning, Analysis and Application

ID.58190

Our team

Weiwei Guo

Prof. Daniela Faur

Prof. Mihai Datcu

Prof. Zenghui Zhang

Prof. Wenxian Yu

PhD. Limeng Zhang

MS. Yan Li

Big EO Data

The Earth is facing unprecedented challenges: environmental, climatic, urbanization, etc.

Earth Observation data with a broad variety of satellite sensors provide invaluable information to understand our state and changes of large areas and even long periods.

The increasing volume of EO data pose challenges to explore these data

Big EO Data

- The increasing volume of EO data pose challenges to explore these data
 - Big data, but unlabeled
 - Multi-modal, heterogeneous data

Multi-platform

Multi-sensor

Multi-perspective

Recent Work 1: Joint SAR and Optical Representation Learning with Vertical Masking

- Mask AutoEncoder (MAE) is a powerful selfsupervised learning methods that is designed for nature images.
- But it is suboptimal for multi-modal remote sensing images due to the great domain gap between multi-modal data, such as optical and SAR
- We explore various mask patterns based on MAE and design a novel self-supervised multimodality pre-trained model with vertical masking to extract complementary information between modals.

Fig. 1. While the RGB channels of natural images tend to exhibit similar information, there often exist significant disparities between RS images of diverse modalities, such as SAR and optical data.

- We propose a 3D-MAE self-supervised learning method that pre-trains on jointly SAR and optical data
- By vertical and spatial masking , the model not only captures the spatial correlation information but channel.
- When finetuning, the pre-trained 3DMAE encoder is utilized to encode the entire image, extracting features that can be applied to various downstream applications.

Recent Work 1: Joint SAR and Optical Representation Learning with Vertical Masking

Different Masking Strategies

Fig. 3. 3D mask exploration. (a) Random-Modality (RM). (b) Random-Channel (RC). (c) Directly RM+RC. (d) 3DM. The input is the concatenation of 2 channels SAR and 10 channels MSI of the same location in channel dimension. The MSI in the figure only shows 6 channels for the convenience of display. The table below gives the various circumstances that may be encountered after the mask.

Experimental Results

Multi-label Classification

3DMAE-3DM exhibits superior multi-modality learning capabilities, resulting in not only better performance for S1+S2 compared to S2 only, but also overall higher performance than SatViT. The relatively slight improvement of S1+S2 in comparison to S2 can be attributed to the already elevated performance level of the model, rendering athe attainment of additional improvements challenging.

FINE-TUNED RESULTS ON BIGEARTHNET-MM VALIDATION SET. THE EVALUATION METRIC IS MAP. S1 REPRESENTS SAR, S2 REPRESENTS OPTICAL IMAGE, AND + REPRESENT THE CONCATENATION.

Model	S1	S2	S1+S2
ResNet50 [2]	85.4	90.2	90.2
SwinSSL [2]	79.5	87.4	87.5
DINO-MM [3]	79.5	87.1	87.1
SatViT-v1 [5]	86.6	92.1	92.6
SatViT-v2 [6]	86.7	92.1	92.8
3DMAE-RM	87.5	93.7	93.7
3DMAE-RC	89.2	94.0	94.1
3DMAE-RM+RC	88.3	93.9	93.9
3DMAE-3DM (ours)	89.5	94.2	94.4

Recent Work 1: Joint SAR and Optical Representation Learning with Vertical Masking

Experimental Results

Small-scale Data Study

- 3DMAE outperforms other self-supervised pre-trained models when applied to small-scale data.
- Furthermore, it shows significantly better performance compared to models that underwent supervised training from scratch on small datasets of BigEarthNet-MM.

Recent Work 1: Joint SAR and Optical Representation Learning with Vertical Masking

Experimental Results

Data Ablation Study

The data for the model pre-trained and fine-tuned varies.

TABLE II
FINE-TUNED RESULTS ON THE SINGLE-MODALITY BIGEARTHNET-MM
VALIDATION SET USING MAP AS THE EVALUATION METRIC. S 1
REPRESENTS SAR, S2 REPRESENTS THE OPTICAL IMAGE.

Model	$\mathbf{S1}$	$\mathbf{S2}$	S1+S2
DINO-S1/S2 [3]	76.2	86.0	-
MoCo-v2-S1/S2 [1]	82.8	89.3	-
SatViT-v1-S1/S2 [5]	87.0	92.7	-
3DMAE-3DM-S1/S2	87.3	94.1	-
DINO-MM [3]	79.5	87.1	87.1
SatViT-v1-MM [5]	86.6	92.1	92.6
3DMAE-3DM-MM	89.5	94.2	94.4

Experimental Results

Generalization Study

TABLE IIIFINE-TUNED RESULTS ON SEN12MS VALIDATION SET.

The model was pretrained on the BigEarthNet dataset, and fine-tuned on SEN12MS dataset, which consists merely of European landscapes, leading to a significant difference in data distribution between the two datasets.

Model	Precision	Recall	F1-score	Pre-trained Dataset
ResNet50 [2]	62.8	62.8	63.2	SEN12MS(Global)
SwinSSL [2]	67.9	65.5	64.8	SEN12MS(Global)
SatViT-v1 [5]	66.0	63.7	63.0	130MILLION(Global)
SatViT-v2 [6]	66.6	62.2	62.7	130MILLION(Global)
3DMAE-3DM	73.6	70.3	70.7	BigEarthNet-MM(European)

Conclusions and Discussion:

- The proposed method enhances the model's performance in multi-modality situations by effectively exploiting complementary information, achieving state-of-the-art (SOTA) performance..
- The proposed model can handle a variety of downstream applications in both single and multimodality scenario. Substantially, it enhances performance in single-modality situations where only SAR images are available, such as in emergency scenarios.
- However, due to the limitation of computing resource overhead, there is still room for further exploration and improvement of mask ratio.

- EO data not only attain the spatial and spectral information but also contain the temporal dimension, exhibiting a big 4D tensor.
- We intend to explore the temporal information for the self-supervised learning on image time series.

Sentinel-1 SAR 8X (2015~2022)

Sentinel-2 RGB 6X (2017~2022)

D Preprocessing

data missing value outlier data type split $x = egin{cases} 0 & x < \mu - 3\sigma \ rac{x - (\mu - 3\sigma)}{6\sigma} imes 255 & \mu - 3\sigma < x < \mu + 3\sigma \ 255 & x > \mu + 3\sigma \end{cases}$ Sentinel-2 RGB Sentinel-1 SAR 8X (2015~2022) 6X (2017~2022) 1.2 label label Cropland Categories 1.0 Tree cover Built-up Permanent water bodies 0.8 Bare sparse vegetation 0.6 Grassland Shrubland Herbaceous wetland 0.4 Cropland Build-up 0.2

Ground truth (2020)

Category Statistics

150

value

200

250

0.0

50

100

Others

Water

Spatial-Temporal Masked Image Modeling

□ Masked Image Modeling

Spatial feature

① Split: 4x4 non-overlapping

patches

- 2 Random Mask: 80%
- ③ Feature Extraction: Swin

Transformer^[8]

④ Decoder: Conv Layer

 $\label{eq:linear_stress} \begin{gathered} \square \ \text{Sequence Contrastive Loss} \\ l = l_{\text{rec}} + \alpha \cdot l_{\text{sim}} \\ \hline l_{\text{sim}} = w_{ij} \Big(1 - \frac{\text{uv}}{|\textbf{u}||\textbf{v}|} \Big) \\ l_{\text{rec}} = \text{smooth } l_1 \, \text{loss}(\textbf{x}, \hat{\textbf{x}}) \\ w_{ij} = 1 - \beta |i - j| \\ \hline 15 \end{gathered}$

Visualization of STMIM Representations

DReconstruction Results of sampled image patches

- ✓ STMIM can restore the outline and detail information of the image, indicating that the model has learned certain image features from a large number of unlabeled images.
- STMIM can effectively extract the consistent features of similar images for the same geographical location at different times. Moreover, it preserves the differentiated features of images with semantic differences

Different places

Visualization of STMIM Representations

Reconstruction Results of a Multiple Time Series Image

Sequence Contrastive Loss

We apply the STMIM pre-trained model for land cover classification and construce a U-like network and take STMIM as the encoder

STMIM-UNet

STMIM Encoder

- ✓ initialized with pre-trained weights from STMIM
- to extract features from remote sensing images
- ✓ significantly reduces the amount of labeled training samples required

G SwinUNetDecoder

 ✓ for fine-grained land cover classification

Labelled Data Ratio Experiments

 our model demonstrates remarkable performance while requiring only less labeled data, outperforming the full supervised baseline model that necessitates 100% labeled data.

Comparison with Baseline Methods

Main Results

U UNet

poor at noise resistance, with the issue of over-segmentation

D SwinUNet

the accuracy still needs to be improved

STMIM-UNet

shows superior performance with better classification results

Comparison with Baseline Methods

Metric		macro	waightad	Class					
	Model	avg	avg	Cropla nd	Build- up	Water	Others		
	UNet	0.55	0.64	0.50	0.50	0.96	0.24		
IOU	SwinUNet	0.54	0.63	0.48	0.49	0.95	0.23		
	STMIM-UNet	0.58	0.67	0.55	0.57	0.96	0.25		
	UNet	0.67	0.74	0.65	0.66	0.98	0.40		
precision	SwinUNet	0.66	0.74	0.65	0.64	0.98	0.39		
	STMIM-UNet	0.70	0.77	0.69	0.68	0.98	0.47		
	UNet	0.68	0.75	0.68	0.67	0.97	0.38		
recall	SwinUNet	0.67	0.74	0.66	0.68	0.97	0.36		
	STMIM-UNet	0.71	0.77	0.73	0.78	0.98	0.36		
	UNet	0.67	0.75	0.67	0.67	0.98	0.39		
f1-score	SwinUNet	0.66	0.74	0.65	0.66	0.97	0.37		
	STMIM-UNet	0.70	0.77	0.71	0.72	0.98	0.40		

mIOU: 0.58

acc: 0.77

- Optical images can provide high spatial resolution, rich spectral and texture information, but optical sensors are sensitive to weather
- SAR sensors adapt to different weather conditions and can penetrate the surface to provide rich spatial information
- We proposed dual-STMIM-Unet to fuse SAR and optical image time series.

Fusion SAR and RGB image features layer by layer

Water

Main Results

- DualSTMIM-UNet can effectively correct the misclassified pixel blocks in both SAR and RGB images
- Its classification performance is superior to that of single-modal models.

Metric Data			macro avg		Class					
	Data	Model		avg	Croplan d	Build- up	Water	Others		
	CAD	SwinUNet	0.54	0.63	0.48	0.49	0.95	0.23		
	SAK	STMIM-UNet	0.58	0.67	0.55	0.57	0.96	0.25		
IOU		SwinUNet	0.66	0.73	0.62	0.69	0.95	0.37		
	KGB	STMIM-UNet	0.69	0.75	0.66	0.71	0.96	0.42		
	SAR+RGB	DualSTMIM-UNet	0.71	0.77	0.70	0.72	0.97	0.44		
	CAD	SwinUNet	0.66	0.74	0.65	0.64	0.98	0.39		
	SAK	STMIM-UNet	0.70	0.77	0.69	0.68	0.98	0.47		
precision		SwinUNet	0.77	0.82	0.75	0.79	0.98	0.57		
	KGB	STMIM-UNet	0.80	0.84	0.79	0.80	0.98	0.63		
	SAR+RGB	DualSTMIM-UNet	0.81	0.85	0.80	0.80	0.99	0.66		
	SAR	SwinUNet	0.67	0.74	0.66	0.68	0.97	0.36		
		STMIM-UNet	0.71	0.77	0.73	0.78	0.98	0.36		
recall		SwinUNet	0.78	0.82	0.77	0.85	0.97	0.51		
	KGB	STMIM-UNet	0.80	0.84	0.81	0.86	0.97	0.55		
	SAR+RGB	DualSTMIM-UNet	0.82	0.86	0.84	0.87	0.98	0.57		
SAR	SwinUNet	0.66	0.74	0.65	0.66	0.97	0.37			
	STMIM-UNet	0.70	0.77	0.71	0.72	0.98	0.40			
f1-score	DCD	SwinUNet	0.77	0.82	0.76	0.82	0.97	0.54		
	КСВ	STMIM-UNet	0.80	0.84	0.80	0.83	0.98	0.59		
	SAR+RGB	DualSTMIM-UNet	0.81	0.85	0.82	0.84	0.98	0.61		

mIOU: 0.71

acc: 0.86

Land cover and land use classification and change detection requires pixel-wise annotation

- Low resolution
- Texture and boundaries are vague
- Some structures are lost

Sentinel-1 SAR images @Shanghai

Domain experts interpret SAR image aided by the optical images

Recent Work 3: Optical-Aided SAR Image Classification • COSA

SAR and Optical image fusion?

It is very difficult to be registered and can not capture the semantic information

We bridge two modalities through high-level semantic but loose the low-level features.

Original SAR

Generated SAR

Geo-matched Original optical

Based adversarial Leaning to generate SAR images at middle domain that are semantically similar but loose details

The method are based on contrastive learning with three strategies to construct the samples

- Instance-level: image augmentation
- Optical-aid: generate SAR image that are semantically similar from the geo-matched optical images
- Cluster-level: cluster the samples

Recent Work 3: **Optical-Aided SAR Feature Learning**

- The experiments are conduceted SEN12MS dataset
- Achieving SOTA with different backbone
- Our method can improve the performance by 20%
- It is comparable or outperform the full-supervised methods

BackBone	Method	Setting	OA.	44	AP	FI	Konno	NMI	ARL
and a second second	DANN (23)		0.2527	0.2706	0.2731	0.1944	0.1329		-
	CDAN [24]	DA	0 2377	0.7610	0.2527	0.1688	0.1163		
	Deepcluster [5]		0.3290	0.3191	0.3233	0.3080	0.2316	0.2020	0.1335
	IIC [20]	1.00	0.3406	0.3541	0.3561	0.3358	0.2441	0.1994	0.1211
ResNet18	MoCo [36]		0.3253	0.1527	0.3282	0.3156	0.2272	0.1780	0.1011
	CC [6]	SSL	0.3748	0.1917	0.3366	0.1738	0.2294	0.2513	0.1575
	GCC 171		0.3780	0.4060	0.3752	0.3763	0.2857	0.2656	0.160
	GCC-BS (nuc)		0.5508	0.6320	0.5610	0.5500	0.4983	0.5155	0.179
	Their from Scratch		0.8885	0.8815	0.8915	0.8844	0.8686	-	
	GCC-RS-FT (our)	FT	0.9167	0.9159	0.9165	0.9159	0.0019	-	-
	Pretrained with Image Net		0.9223	0.9206	0.9082	0.9093	0.9088		-
	Concat-4 channel	DF	0.9350	0.9317	0.9470	0.9181	0.9214		-
	DANN 1231		0.2499	0.2761	0.3100	0.1856	0.1350		
	CDAN [24]	DA	0.2218	0.7460	0.2152	0.1581	0.1011		
	Departmenter [S]		0.3503	0 1517	0.3170	0.3257	0.2465	0.2233	0.143
	100 (20)		0 3536	0 1748	0.3458	0 1450	0.2580	0.2217	0.145
	MaCo D61		0 3531	01164	0 3144	0.7867	0.2392	0.2235	0.119
	00.161	SSL	0.3859	0.1050	0.3780	0.3790	0.2920	0.2604	0.168
ResNet50	CCC [2]		0.3755	0.4001	0.3722	0.1721	0.2845	0.2630	0.160
	CCC BS (and)		0 5120	0.6100	0 5145	0.5107	0.4301	0.4923	0160
	Train from Scratch		0.8960	0.5800	0.9003	0.6865	0.8716	0.4745	
	CCC-BS-FT (mar)	FT	0.9302	0.9077	0.9213	0.0135	0.9060		-
	Protociary with ImageNat		0.9197	0.5300	0.9153	0.5107	0.0017	-	-
	Concat A shound	THE	0.9150	0.0300	0.0110	0.0176	0.0017		-
	Concer-4 channel	Dr	0.9100	0.7561	0.9210	0.2170	0.1287	-	-
	CDAN (24)	DA	0.3032	0.2365	0.2139	0.1775	0.1267		
	Const (24)	SSL	0.2603	0.2010	0.1994	0.1206	0.0000	0.3534	0.147
	Deepensier [5]		0.3665	0.3830	0.3893	0.3179	0.2097	0.23.34	0.147
	10C [20]		0.3800	0.3780	0.3330	0.3344	0.2662	0.2552	0.138
	300C0 [30]		0.9999	0.3929	0.3456	0,9488	0.2404	0.2005	0.127
VGG16			UMLCI .	0.4389	0.4100	0.4099	0.3374	0.3094	0.210
	GCC [7]		0.4246	0.4400	0.4247	0.4145	0.3418	0.32.30	0.218
	GCC-RS (our)	-	0.5442	0.6236	0.5523	0.5385	0.4791	0.5315	0.376
	Train from Scratch		0.9028	0.9038	0.9153	0.9091	0.8854	-	-
	OCC-RS-FT (our)	FT	0.9424	0.9407	0.9498	0.9449	0.9320	-	-
	Pretrained with ImageNet		0.9328	0.9383	0.9207	0.9292	0.9207		
	Concat-4 channel	DF	0.9213	0.9227	0.9303	0.9263	0.9074	· · ·	-
	DANN [23]	DA	0.2196	0.2170	0.3148	0,1585	0.0941	-	-
	CDAN [24]	10414	0.1973	0.2014	0.3048	0.1553	0.070	-	-
	Deepcluster [5]	1	0.3538	0.3774	0.3779	0.3624	0.2592	0.2201	0.130
	IIC [20]		0.3507	0.3734	0.3650	0.3540	0.2558	0.2328	0.141
	MoCo [36]	SSL	0.3332	0.2336	0.1663	0.1564	0.1637	0.1785	0.082
Incention v3	CC [6]		0.4073	0.4114	0.4422	0.3739	0.3239	0.3078	0.201
meeting_12	GCC [7]		0.4552	0.5285	0.4535	0.4526	0.3758	0.3972	0.263
	GCC-RS (our)		0.6027	0.5690	0.6015	0.5697	0.5458	0.5781	0,437
	Train from Scratch	1.00	0.9214	0.8676	0.9280	0.8836	0.9072	-	-
	GCC-RS-FT (our)	FT	0.9804	0.9811	0.9817	0.9813	0.9770		
	Pretrained with ImageNet		0.9521	0.9465	0.9524	0,9486	0.9437		
	Concat-4 channel	DF	0.9489	0.9558	0.9529	0.9540	0.9399		
	MoCo [36]	1	0.3491	0.3548	0.3548	0.3358	0.2578	0.1810	0.122
	CC [6]	991	0.4055	0.4291	0.4003	0.3971	0.3188	0.2935	0.194
Sain Transformer Time	GCC [7]	ast	0.4356	0.4336	0.4369	0.4163	0.3550	0.3328	0.227
swu-transonner tiny	GCC-RS (our)		0.5990	0.5677	0.6002	0.5693	0.5403	0.5395	0.416
	OCC-RS-FT (our)	ET	0.9572	0.9573	0.9619	0.9595	0.9497	-	-
-	Pretrained with ImageNet	PI	0.9184	0.8256	0.8073	0.8158	0.9035	-	-
	the second se								0.100
	MAE [37]	SSL	0.3913	0.3951	0.4189	0.3843	0.2944	0.2590	0.155

