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Project’s objectives

(1)Mapping and dynamic monitoring of grassland types

(2)Quantitative estimation of grassland ecological indictors

(3)Degraded Grassland detection and assessment

LETTER

doi:10.1038/nature13376

Contribution of semi-arid ecosystems to interannual
variability of the global carbon cycle

Benjamin P(;ullcl‘l‘z, David Frank>*, Philippe Ciais?,

Ranga B. Myneni®, Niels Andela®, Jian Bi®, Gregoire Broquet?,

Josep G. Canadell’, Frederic Chevallier®, Yi Y. Liu®, Steven W. Running?, Stephen Sitch'® & Guido R. van der Werf®

Theland and ocean act as a sink for fossil-fuel emissions, thereby slow-
ing the rise of atmospheric carbon dioxide concentrations'. Although
the uptake of carbon by oceanic and terrestrial processes has kept
pace with accelerating carbon dioxide emissions until now, atmo-
spheric carbon dioxide concentrations exhibit a large variability on
interannual timescales®, considered to be driven primarily by terres-
trial ecosystem processes dominated by tropical rainforests’. We use

in order for us to be able to forecast long-term biospheric responses to
climate change’.

High uncertainties in quantifying ecosystem processes mean that the
global terrestrial carbon sink is often estimated as the residual between
emissions from the combustion of fossil fuels, cement production and
net land-use change, and sinks combining accumulation in the atmo-
sphere and uptake by the ocean®. Using this method, the Global Carbon

Poulter B, et al. Nature, 2014.

CARBON CYCLE

The dominant role of semi-arid
ecosystems in the trend and
variability of the land CO, sink

Anders Ahlstrom,>* Michael R. Raupach,*t Guy Schurgers,* Benjamin Smith,"

Almut Arneth,” Martin Jung,® Markus Reichstein,® Josep G. Canadell,” Pierre Friedlingstein,®
Atul K. Jain,® Etsushi Kato,'® Benjamin Poulter," Stephen Sitch,'> Benjamin D. Stocker,*"*
Nicolas Viovy,"” Ying Ping Wang,'® Andy Wiltshire,"” Sonke Zaehle,® Ning Zeng'®

The growth rate of atmospheric carbon dioxide (CO,) concentrations since industrialization

is characterized by large interannual variability, mostly resulting from variability in CO, uptake
by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional
ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-
surface models and an empirical observation-based product of global gross primary production,
we show that the mean sink, trend, and interannual variability in CO> uptake by terrestrial
ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is
dominated by highly productive lands (mainly tropical forests), the trend and interannual
variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly
associated with circulation-driven variations in both precipitation and temperature.

M o tho 10RNG tarractrial acncuctame hava | an imhalannea hatwaan tha nntala af (0. thranah

Ahlstrom A, et al. Science, 2015.

Downloaded from www.s¢




EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for
no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert “ftp”

ESA Third Party Missions m
300

ESA /Copernicus Missions

Chinese EO data m

1.51 12 1. MODIS NDVI product 1.GF-6 WFV 10
2.52 12 2. 2.GLASS NPP Global
3. 3. 3.

4. 4. 4.

5. 5. 5.

6. 6. 6.

Total: Total: Total:

Issues: Issues: Issues:



Study area

Zhenglan Banner is situated in the southern part of XilinGol League
in Inner Mongolia, within the Otindag sandy land hinterland. The region
covers a total area of approximately 10,182 km?2.

Zhenglan Banner falls under the mid-temperate continental
monsoon climate category, characterized by an average annual
temperature of 1.5 °C and an average annual rainfall of 362.5 mm,
mostly concentrated from June to September.

Herbaceous vegetation represents a valuable resource in Zhenglan
Banner, with the available grassland area accounting for 86.88% of the
total land area. Herbaceous vegetation types can be broadly classified
into three main categories: meadow vegetation, typical grassland

vegetation, and sand vegetation.
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Being the nearest area of typical grassland and sand source to Beijing and
Tianjin, Zhenglan Banner’s ecological status holds significant importance. Many
national initiatives focused on grassland protection and construction, resulting

in substantial improvements in the regional ecological environment.



Detail the in-situ data measurements and requirements

. epe . 115°0'E 115°30'E 116°0'E 116°30'E
Sample Information for Grassland Type Classification _
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 Sample point data were obtained through field surveys conducted z ,Zf
from August 10 to August 18, 2020, as well as visual interpretation of 2 )
multitemporal GF-2 satellite multispectral data and submeter H5°0E  11530'E  116°0'E  116°30'E
resolution images from Google Earth. : :ZZG ’ iﬁs ' SI\SASCIBoundary of banners

e Atotal of 467 sample points were collected, which were divided into
training samples and validation samples in a 7:3 ratio. Spatial distribution of samples for grassland

classification
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Layout of sample plots and sampling
method for aboveground biomass of
grassland vegetation

25 grassland sample plots were set up in
LQ

Sample plots was set to 32 m x 32 m
square

The aboveground parts from three 1 m x
1 m sample squares laid in each sample
plot were harvested and placed into
archive bags.

Vegetation coverage, grassland height,
sample photographs, grassland type, and
a description of the environment
surrounding each sample plot were also
recorded of the convenience of
subsequent analysis and reference.



Integrating vegetation phenological characteristics and polarization

features with object-oriented techniques for grassland type
identification

 Due to the small size, variety, and high degree of mixing of herbaceous vegetation,
remote sensing-based identification of grassland types primarily focuses on extracting
major grassland categories, lacking detailed depiction.

* This limitation significantly hampers the development of effective evaluation and fine
supervision for the rational utilization of grassland resources.

 To address this issue, it integrates the strengths of Sentinel-1 and Sentinel-2 active-
passive synergistic observation and introduces innovative object-oriented techniques for

grassland type classification, thereby enhancing the accuracy and refinement of
grassland classification.



(1) Acquisition of classification features,
which includes extracting spectral features
from multiseasonal Sentinel-2 MSI
multispectral images, capturing polarization
features from multiseasonal Sentinel-1 C-SAR
data, and utilizing eight characteristic
parameters representing the full cycle of
vegetation growth.

(2) Acquisition of geographic object units
based on the SLICO superpixel algorithm.

(3) Utilization of the random forest algorithm
and characteristic data at the geographic
object-level to identify grassland types,
followed by verification of the classification
accuracy using a confusion matrix.
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Flow chart of grassland classification method



e Grassland remote sensing classification system

Based on the aforementioned classification criteria for
grassland types, and considering the suitability of medium
spatial resolution remote sensing images and their practical
applications in grassland management, this study adopts the
vegetation-habitat classification method.

Additionally, the research incorporates field survey data on
grassland vegetation types in the study area and relevant data
on livestock management. As a result, a relatively suitable
grassland remote sensing classification system is developed.

At the first level, the system primarily reflects soil texture,
encompassing three grassland classes: sandy grassland, typical
grassland, and meadow.

At the second level, the system further delineates the
heterogeneous characteristics within different grassland
classes, consisting of six grassland subcategories: sandy sparse
forest grassland, sandy shrub grassland, sandy meadow, low
hill steppe, gently sloping steppe, and lowland meadow

Level 1

Level 2

Description

MSI image examples
(Standard false color)

Sample plot photos

sandy
grassland

typical
grassland

meadow

Sandy sparse
forest
grassland

sandy shrub
grassland

sandy
meadow

low hill
steppe

gently
sloping
steppe

lowland
meadow

Elm sparsely forested landscapes with tree depression less than 0.3
and herbaceous cover greater than 5%. In the windward slopes of
dunes and flat sandy areas, sandy pioneer plants such as
Agriophyllum squarrosum., Salsola collina Pall. and Corispermum
mongolicum or Artemisia intramongolica H.C.Fu. are the main
building blocks. The image tone is white and the texture is coarse.

Shrubs are dominated by Caragana microphylla Lam. and herbs are
mainly established by Polygonum divaricatum, Artemisia
intramongolica H.C.Fu and Agropyron mongolicum, etc. The shrub
cover is less than 30% and the herb cover is more than 5%. The
image tone is greenish-gray with light red and rough texture.

Located in the lowland between sand dunes, with no drifting sand
disturbance on the surface, and crust layer developed, stable
substrate, good soil moisture and nutrient status, mainly
distributing communities such as Stipa krylovii Roshey., Artemisia
frigida, Agropyron cristatum, Zornia glochidiata, Leymus
secalinus, Carex sp., etc., with herbaceous vegetation coverage

more than 5%. The image tone is greenish-gray and uniform, the
It is distributed in the low hills between 1250 and 1300 m above

sea level. It is dominated by grass grasslands with poor weed
species, and the representative establishment species are Stipa
krylovii Roshev and Artemisia fiigida. The total cover of the
grassland is low. The image tone is greenish-gray, with clear
boundaries with typical grasslands on gentle ground.

It is located on the high plains and in the peripheral areas of the
mudflats, and is dominated by grassy grasslands with many mixed
grasses, represented by Zornia glochidiata and Stipa grandis. Most
of the grassland covers not less than 30%. The image tone is pink,
with smooth and fine texture.

It is found in saline lowlands on river floodplains, wide valley
bottoms, inland lake basin margins, and poorly drained lowlands.
The vegetation type is mainly mesophytic and wet mesophytic
perennial herbaceous plants with dense grasses and little bare
ground. The image tone is bright red but uneven, with smooth and
fine texture.

- |

—
=




* Features for grassland types identification

—— Fitted NDVI E :
i - .. 0.6 - \w i PEAKI=0.58
Type Variable name Parameter Definition or description : Lol | T
i P ‘Fh\
Reflectance B2~B4, B8 S2 MSI data for spring, summer, and autumn time phases 0.4 1 ?;f:fé:zl :
Spectral characteristics = o :
Vegetation index NDVI (B8-B4)/(B8+B4) A 5 i \
Z, ! .\'lGS:: 0.50 !
S1 C-SAR data in spring, summer, and autumn phases for 0.2 1 i LOS=118 !
Polarization characteristics Backward scattering coefficient o E . !
two polarization modes VV and VH under o E \
0.0 - / : !
SOS, EOS, LOS, POP, PEAK, MAU, MGS, MSP and other eight - E i
Phenological characteristics Phenology Phenological characteristics : : : : : - N : . : :
parameters 1 33 65 97 129 161 193 225 257 289 321 35

Day of Year

start of the season (SOS), end of the season (EOS), length of the season (LOS), position of peak value (POP), peak value
(PEAK), mean autumn value (MAU), mean growing season value (MGS), and mean spring value

Phenological characteristics obtained using
the extreme value method based on the first
derivative of the NDVI time series

* Object-oriented classification

» Image segmentation: SLICO can adaptively select the optimal compactness parameter for each superpixel

» Classification: Random forest

» Classification accuracy evaluation: Production accuracy (PA), user accuracy (UA), overall accuracy (OA), and
Kappa coefficient as metrics to summarize the classification performance.
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series for pure pixel (a) and mixed pixel(b)
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Eight phenological characteristics extracted based on the fused
NDVI time series



Influence of fusing different classification features on classification accuracy

Classification accuracy of different feature combinations

Combination Multiseasonal Multiseasonal spectral + Multiseasonal spectral + Multiseasonal spectral + Phenological +

method spectral Phenological Polarization Polarization

OA (%) 66.67 76.09 80.43 82.61
Kappa coefficient 0.5975 0.7117 0.7639 0.7903

User Accuracy(%) Producer Accuracy(%)
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UA and PA of the six grassland types with different feature combinations NDVI time series of six grassland types



Spatial distribution pattern of grassland types in Zhenglan Banner
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Discussion

(1) Construction of grassland remote sensing classification system
(2) Use of remote sensing data
(3) Application of remote sensing features for grassland type identification

(4) Refinement of grassland type identification



Conclusions

(1) This study addresses the application needs of grassland resource regulation and proposes a grassland remote sensing classification system
suitable for the northern natural grassland. This classification system can serve as a reference for constructing remote sensing fine identification
systems for natural grasslands in other regions.

(2) This NDVI captures the temporal profile of grassland types and enables the accurate extraction of vegetation phenological information,
particularly in mixed pixels. The method accurately reflects the changing characteristics of different grassland types at various growth stages,
facilitating fine identification.

(3) Under the object-oriented framework, the study utilizes SLICO superpixel segmentation and random classification for the fine identification of
grassland types. The classification method that integrates multiseasonal phase spectrum, polarization, and phenological characteristics achieves the
highest classification effectiveness. The OA reaches 82.61%, with a Kappa coefficient of 0.79. The inclusion of separate polarization features and

phenological characteristics enhances the classification accuracy by 13.76% and 9.42%, respectively.



High temporal and spatial estimation of grass yield by applying an
improved Carnegie-Ames-Stanford Approach (CASA)-NPP transformation
method

Grazing is the main and most important use of grasslands, and accurate estimation of the productivity of grassland with
high temporal and spatial resolution is key to obtaining accurate evaluations of its livestock carrying capacity.

Methods for the estimation of grass yield based on remote sensing can be broadly classified into three categories:
empirical methods, physical methods, and gross/net primary productivity (GPP/NPP) conversion methods, light-use
efficiency (LUE) models are the most widely used for estimating grassland production

However, there are still uncertainties regarding some parameters and calculations in grass-yield estimations based on the
CASA model. For example, the optimum temperature is an important parameter in the simulation of NPP, and it has a

significant impact on the simulation effect.

This research had the following two objectives:

(1) To study the reasonable expression of optimum temperature in the CASA model by combining the phenological
performance characteristics of the grass-growth state across the whole cycle.
(2) To construct an estimation model for grass yield with high temporal and spatial accuracy, and to analyze the

applicability of the NPP conversion method for estimating the grass yields of different grassland types.



Construction of high-
temporal-resolution NDVI
time-series datasets

NPP estimation of grassland
vegetation based on CASA
model

Construction of grass-yield
estimation model based on
NPP

Validation
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Flowchart of the research method



Construction of high-temporal-resolution NDVI time-series datasets
M N
F(x,y,t,) = Zk:l zi:1w(xi'yi'tk) X [a(x;, yi, Aty) X F(x;, yi, t) + b(x;, ¥y, Aty

CASA model for NPP estimation
NPP(u,t) = APAR(u, t) X €(u, t),

APAR(w, t) = SOL(w, t) X 0.5 X FPAR(w, t),

e, t) = Tey (W, t) X T (U, £) X We(w, 1) X mays
Optimization of models based on optimum temperature

Ter (U, t) = 0.8 4 0.02 X Ty (w) — 0.0005 X (T, (w))?,

Tep(u, t) = 14 02X Topt@—10-T (D) 7 71 03X(Topr()—10+T (,0))

Construction of grass-yield estimation model based on NPP

. X fbiomassa

30 0.6

20

T (°C)

-30
1 17 33 49 65 81 97 113129145161177 193209225241 257273289 305321337353

DOY

Intra-annual trends in grassland NDVI and temperature

The SOS and POP parameters were determined by
smoothing and interpolating the NDVI time series,
testing their seasonality, and taking the extreme
values of their first-order derivatives for the image
elements with seasonality
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Validation of the accuracy of the grass-yield estimation model
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Temporal and spatial distribution characteristics of grass yield in Zhenglan Banner

200

| - - - Optimized result
Unoptimized result
Sandy shrub grassland

Tphopt-based grass-yield model

Topt-based grass-yield model

Sandy sparse forest grassland
Low hill steppe
Sandy meadow
Gently sloping steppe
Lowland meadow

AR EN ]

100 |

Average monthly grass yield(g/m?)

Grassland type Grass yield Standard Grass yield Standard
(g/m?) deviation (g/m?) (g/m?) deviation (g/m?)
Sandy sparse forest 86.08 7.76 67.49 7.00
grassland
Sandy shrub grassland 535.22 14.75 466.48 13.90
Sandy meadow 256.81 9.47 229.77 8.79
Low hill steppe 148.11 7.20 135.13 6.67
Gently sloping steppe 260.53 9.06 237.87 8.41
Lowland meadow 507.82 13.14 463.63 12.18

Time series of grass yields in different grassland types estimated by NDVIhi-based grass-yield model and NDVImo+Topt-

based grass-yield model
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Discussion

(1) Advantages and reliability of the method
(2) Sources of estimation error

(3) Association between grassland production and seasonal grazing



By fusing the advantages of the high spatial resolution and high temporal coverage of two sets of satellite data (GF-6 WFV
data and MODIS data), an NDVI time-series dataset with high spatiotemporal resolution was generated. This achieved
accurate extraction of grassland vegetation phenology information with high temporal and spatial resolution, and it thus
allowed definition of the optimum temperature for vegetation growth from a phenology perspective, i.e., the period from
the SOS to the period during which the NDVI maximum (the POP) is located. This enhances the theoretical basis of the
optimum temperature parameter in the model and minimizes the influence of anomalous NDVI maxima. Compared with
the original optimum temperature algorithm, the influence of the lag in grassland growth with respect to temperature is
also largely solved.

The correlation between NPP and the grass yield estimated based on the CASA model is very strong, and the correlation
values between the models before and after optimization and the measured grass yield reached above 0.75 and were
relatively close. The grass-yield model optimized by the optimum temperature was notably enhanced, and the overall
accuracy of the model’s grass-yield estimation was improved by nearly 15 percentage points. This was especially true in
the sandy shrub grassland and lowland meadow, where the improvement effect was most obvious.

The total annual grass yield of Zhenglan Banner in 2020 based on this method was 2.94 x 102 g, and the annual grass
yield per unit area was 287.87 g/m2. The basic characteristics of the spatial distribution of the yield were similar the
distribution of grass types. Due to differences in the main vegetation types of the different grasses, the seasonal grass
yields of the different grassland types were somewhat different. However, overall, they all accumulated mainly in summer,
and growth in this season accounted for more than 80% of the annual grass yield.



Global Degradation Trends of Grassland and their Driving Factors

Since 2000

* Grassland degradation threatens Sustainable
Development Goals (SDGs) like poverty eradication, zero
hunger, and climate action.

* There's a lack of standardized methods to assess global

grassland degradation, hindering SDGs progress.

Remote sensing and net primary production (NPP) offer
effective tools to monitor and understand grassland
degradation but require consistency and global
applicability. Climate change impacts and benchmarking
are key considerations.
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Flowchart of the research method

® Calculation of the moisture-responded NPP (MNPP)
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® Detection of areas of grassland degradation and
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® Standard for identifying trends in grassland degradation and improvement

Significantly decrease Non-significant change Significant increase

Significant negative

Significant increase correlation with Ml Fluctuation
Other
Non-significant change Improvement
Degeneration Improvement
Significant negative
Fluctuation
correlation with Ml
Significantly decrease
Fluctuation

Other
Degeneration




® Grassland degradation and improvement degree

Very significantly degrading <-30.0
Significantly degrading -30.0~-20.0
Moderately degrading -20.0~-10.0

Slightly degrading -10.0~0
Slightly improving 0~10.0
Moderately improving 10.0~20.0
Significantly improving 20.0~30.0

Very significantly improving >30.0
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Distribution of global grassland degrading and improving areas from 2000-2020
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Legend
Very significantly Significantly Moderately Slightly Other
degrading degrading degrading degrading grassland

Distribution of global grassland degrading areas in different
degrees from 2000-2020 and hotspots locations: Southern
Africa (region A); East African Plateau (region B), Northern
Asian Caspian (region C); Eastern Brazil plateau (region D);
Northern Bolivia (region E)
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Legend
Slightly Moderately Significantly Very significantly Other
improving improving improving improving grassland

Distribution of global grassland improving areas in different
degrees from 2000-2020 and hotspots locations: Qinghai-Tibet
Plateau in China (region F), the Loess Plateau (region G),
central North America (region H), and the western Sahel in
Africa (region |); Northern La Plata (region J)
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Global grassland degrading (a) and improving (b) proportion of driving factors in different climatic regions
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Precipitation and NPP variations
in degrading grassland hotspots
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(1) The trend of NPP and
precipitation is the same, and
the fluctuation of NPP was
mainly controlled by
precipitation.

(2) The overall trends of
NPP and precipitation are
consistent, but the segmental
interannual variability or the
degree of variation is not
identical.

(3) The trends in NPP and
precipitation are precisely
opposite.



Discussion

(1) Mapping global grassland degradation and improvement.
(2) Irregular processes of global grassland degradation driven by climate change and human activities.

(3) Implications in grassland degradation trends studies and future opportunities.



Conclusions

(1) Grassland degradation and improvement processes are happening globally, with an overall improvement trend. Improved
grassland area is 1.92 times larger than degraded grassland. Semi-humid and humid regions experience the least degradation.

(2) Africa faces significant grassland degradation, while Asia leads in grassland improvement. However, the global land
degradation crisis remains a serious obstacle to achieving Land Degradation Neutrality (LDN).

(3) Climate change and human activities are the main drivers of grassland degradation, accounting for 84.72% and 87.76% of the
combined effects, respectively. Human activities have reversed degradation in some regions, but extensive cultivation and poor land
management can worsen degradation.

(4) Priorities include long-term care of grassland degradation hotspots, targeted interventions, and sharing successful
management experiences to address the global land degradation crisis and contribute to Sustainable Development Goal 15.3 for a

land degradation-neutral world.



* Inform on the project’s schedule, planning & contribution of the partners for the following year

> validation of results
» consultation with end users
» final reporting & publishing



@/ngec Chinese Young scientists contributions in Dragon 5 @esa

* Report on the level and training of young scientists on the project achievements, including plans for academic
exchanges

Poster title Contribution including period

of research

Li Changlong Guangzhou College Characteristics of Vegetation Dynamic  Mapping and dynamic
of Commerce Changes in the Beijing-Tianjin monitoring of grassland types
Sandstorm Source Area in the Past 20
Years
Cui Hanwen IFRIT, CAF/AIR, CAS  Generation of Daily Mid-high Spatial Quantitative estimation of

Resolution Surface Reflectance Dataset grassland ecological
andits Application in Grassland
Utilization Intensity Monitoring

Two student from University of Leeds will visit CAS and CAF in the following year.



* Report on the peer reviewed publications (nr. of papers, journal name and publication title) after 3 years of

activity

1. Bin Sun, Pengyao Qin, Changlong Li, et al. Integrating vegetation phenological characteristics and polarization
features with object-oriented techniques for grassland type identification [J], Geo-spatial Information

Science(accepted)

2. Yan Ziyu, Gao Zhihai, Sun Bin, et al. Global degradation trends of grassland and their driving factors since 2000[J],
International Journal of Digital Earth. 2023, 16(1), 1661-1684






