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Project’s objectives
(1)Mapping and dynamic monitoring of grassland types

(2)Quantitative estimation of grassland ecological indictors

(3)Degraded Grassland detection and assessment

Poulter B, et al. Nature, 2014.
Ahlström A, et al. Science, 2015.



EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for 
no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert “ftp” 

ESA /Copernicus Missions No. 
Scenes

1.S1 12

2.S2 12

3.

4.

5.

6.

Total:

Issues:

ESA Third Party Missions No. 
Scenes

1. MODIS NDVI product 300

2.

3.

4.

5.

6.

Total:

Issues:

Chinese EO data No. 
Scenes

1.GF-6 WFV 10

2.GLASS NPP Global

3.

4.

5.

6.

Total:

Issues:



Zhenglan Banner is situated in the southern part of XilinGol League

in Inner Mongolia, within the Otindag sandy land hinterland. The region

covers a total area of approximately 10,182 km2.

Zhenglan Banner falls under the mid-temperate continental

monsoon climate category, characterized by an average annual

temperature of 1.5 ℃ and an average annual rainfall of 362.5 mm,

mostly concentrated from June to September.

Herbaceous vegetation represents a valuable resource in Zhenglan

Banner, with the available grassland area accounting for 86.88% of the

total land area. Herbaceous vegetation types can be broadly classified

into three main categories: meadow vegetation, typical grassland

vegetation, and sand vegetation.

Study area

Being the nearest area of typical grassland and sand source to Beijing and

Tianjin, Zhenglan Banner’s ecological status holds significant importance. Many

national initiatives focused on grassland protection and construction, resulting

in substantial improvements in the regional ecological environment.



Detail the in-situ data measurements and requirements

Spatial distribution of samples for grassland 
classification

Grassland type Number of classified samples Number of validation samples Total number of samples

Sandy sparse forest grassland 47 19 66

Sandy shrub grassland 61 26 87

Sandy meadow 63 27 90

Low hill steppe 57 24 81

gently sloping steppe 49 21 70

Lowland meadows 52 21 73

• Sample point data were obtained through field surveys conducted
from August 10 to August 18, 2020, as well as visual interpretation of
multitemporal GF-2 satellite multispectral data and submeter
resolution images from Google Earth.

• A total of 467 sample points were collected, which were divided into 
training samples and validation samples in a 7:3 ratio.

Sample Information for Grassland Type Classification



Layout of sample plots and sampling 
method for aboveground biomass of 
grassland vegetation

25 grassland sample plots were set up in
ZLQ

Sample plots was set to 32 m × 32 m
square

The aboveground parts from three 1 m ×
1 m sample squares laid in each sample
plot were harvested and placed into
archive bags.

Vegetation coverage, grassland height,
sample photographs, grassland type, and
a description of the environment
surrounding each sample plot were also
recorded of the convenience of
subsequent analysis and reference.

Distribution of center points of 
field-survey sample plots



Integrating vegetation phenological characteristics and polarization
features with object-oriented techniques for grassland type
identification

• Due to the small size, variety, and high degree of mixing of herbaceous vegetation,
remote sensing-based identification of grassland types primarily focuses on extracting
major grassland categories, lacking detailed depiction.
• This limitation significantly hampers the development of effective evaluation and fine

supervision for the rational utilization of grassland resources.
• To address this issue, it integrates the strengths of Sentinel-1 and Sentinel-2 active-

passive synergistic observation and introduces innovative object-oriented techniques for
grassland type classification, thereby enhancing the accuracy and refinement of
grassland classification.



(1) Acquisition of classification features,
which includes extracting spectral features
from multiseasonal Sentinel-2 MSI
multispectral images, capturing polarization
features from multiseasonal Sentinel-1 C-SAR
data, and utilizing eight characteristic
parameters representing the full cycle of
vegetation growth.
(2) Acquisition of geographic object units
based on the SLIC0 superpixel algorithm.
(3) Utilization of the random forest algorithm
and characteristic data at the geographic
object-level to identify grassland types,
followed by verification of the classification
accuracy using a confusion matrix.

Flow chart of grassland classification method



Ø Based on the aforementioned classification criteria for
grassland types, and considering the suitability of medium
spatial resolution remote sensing images and their practical
applications in grassland management, this study adopts the
vegetation-habitat classification method.

Ø Additionally, the research incorporates field survey data on
grassland vegetation types in the study area and relevant data
on livestock management. As a result, a relatively suitable
grassland remote sensing classification system is developed.

Ø At the first level, the system primarily reflects soil texture,
encompassing three grassland classes: sandy grassland, typical
grassland, and meadow.

Ø At the second level, the system further delineates the
heterogeneous characteristics within different grassland
classes, consisting of six grassland subcategories: sandy sparse
forest grassland, sandy shrub grassland, sandy meadow, low
hill steppe, gently sloping steppe, and lowland meadow

• Grassland remote sensing classification system



Type Variable name Parameter Definition or description

Spectral characteristics
Reflectance B2~B4，B8 S2 MSI data for spring, summer, and autumn time phases

Vegetation index NDVI (B8-B4)/(B8+B4)

Polarization characteristics Backward scattering coefficient σ
S1 C-SAR data in spring, summer, and autumn phases for 

two polarization modes VV and VH under σ

Phenological characteristics Phenology Phenological characteristics
SOS, EOS, LOS, POP, PEAK, MAU, MGS, MSP and other eight 

parameters

• Features for grassland types identification

Ø Image segmentation: SLIC0 can adaptively select the optimal compactness parameter for each superpixel
Ø Classification: Random forest
Ø Classification accuracy evaluation: Production accuracy (PA), user accuracy (UA), overall accuracy (OA), and

Kappa coefficient as metrics to summarize the classification performance.

• Object-oriented classification

start of the season (SOS), end of the season (EOS), length of the season (LOS), position of peak value (POP), peak value
(PEAK), mean autumn value (MAU), mean growing season value (MGS), and mean spring value (

Phenological characteristics obtained using 
the extreme value method based on the first 
derivative of the NDVI time series



Spatiotemporal fusion effect and phenological characteristic extraction

Comparison of fused NDVI time series with MODIS NDVI time 
series for pure pixel (a) and mixed pixel(b)

Eight phenological characteristics extracted based on the fused 
NDVI time series



Combination 

method

Multiseasonal

spectral

Multiseasonal spectral + 

Phenological

Multiseasonal spectral + 

Polarization

Multiseasonal spectral + Phenological + 

Polarization

OA (%) 66.67 76.09 80.43 82.61

Kappa coefficient 0.5975 0.7117 0.7639 0.7903

NDVI time series of six grassland types

Classification accuracy of different feature combinations

UA and PA of the six grassland types with different feature combinations

Influence of fusing different classification features on classification accuracy



Grassland type classification result in Zhenglan Banner
Box plots of phenological characteristics of different 
grassland types

Spatial distribution pattern of grassland types in Zhenglan Banner



(1) Construction of grassland remote sensing classification system

(2) Use of remote sensing data

(3) Application of remote sensing features for grassland type identification

(4) Refinement of grassland type identification

Discussion



(1) This study addresses the application needs of grassland resource regulation and proposes a grassland remote sensing classification system

suitable for the northern natural grassland. This classification system can serve as a reference for constructing remote sensing fine identification

systems for natural grasslands in other regions.

(2) This NDVI captures the temporal profile of grassland types and enables the accurate extraction of vegetation phenological information,

particularly in mixed pixels. The method accurately reflects the changing characteristics of different grassland types at various growth stages,

facilitating fine identification.

(3) Under the object-oriented framework, the study utilizes SLIC0 superpixel segmentation and random classification for the fine identification of

grassland types. The classification method that integrates multiseasonal phase spectrum, polarization, and phenological characteristics achieves the

highest classification effectiveness. The OA reaches 82.61%, with a Kappa coefficient of 0.79. The inclusion of separate polarization features and

phenological characteristics enhances the classification accuracy by 13.76% and 9.42%, respectively.

Conclusions



High temporal and spatial estimation of grass yield by applying an
improved Carnegie-Ames-Stanford Approach (CASA)-NPP transformation
method

Grazing is the main and most important use of grasslands, and accurate estimation of the productivity of grassland with
high temporal and spatial resolution is key to obtaining accurate evaluations of its livestock carrying capacity.

Methods for the estimation of grass yield based on remote sensing can be broadly classified into three categories:
empirical methods, physical methods, and gross/net primary productivity (GPP/NPP) conversion methods, light-use
efficiency (LUE) models are the most widely used for estimating grassland production

However, there are still uncertainties regarding some parameters and calculations in grass-yield estimations based on the
CASA model. For example, the optimum temperature is an important parameter in the simulation of NPP, and it has a
significant impact on the simulation effect.

This research had the following two objectives:
(1) To study the reasonable expression of optimum temperature in the CASA model by combining the phenological
performance characteristics of the grass-growth state across the whole cycle.
(2) To construct an estimation model for grass yield with high temporal and spatial accuracy, and to analyze the
applicability of the NPP conversion method for estimating the grass yields of different grassland types.



• Construction of high-
temporal-resolution NDVI
time-series datasets

• NPP estimation of grassland
vegetation based on CASA
model

• Construction of grass-yield
estimation model based on
NPP

• Validation

Flowchart of the research method



F"𝑥, 𝑦, 𝑡p( =* * 𝑊(𝑥𝑖, 𝑦𝑖 , 𝑡𝑘) × [𝑎(
𝑁

𝑖=1

𝑀

𝑘=1
𝑥𝑖, 𝑦𝑖 , ∆𝑡𝑘) × 𝐹(𝑥𝑖, 𝑦𝑖 , 𝑡𝑘) + 𝑏(𝑥𝑖, 𝑦𝑖 , ∆𝑡𝑘  

• CASA model for NPP estimation
NPP(𝑢, 𝑡) = APAR(𝑢, 𝑡) × 𝜀(𝑢, 𝑡), 

APAR(𝑢, 𝑡) = SOL(𝑢, 𝑡) × 0.5 × FPAR(𝑢, 𝑡), 

𝜀(𝑢, 𝑡) = 𝑇𝜀1(𝑢, 𝑡) × 𝑇𝜀2(𝑢, 𝑡) ×𝑊𝜀(𝑢, 𝑡) × 𝜀max , 

• Optimization of models based on optimum temperature

𝑇𝜀1(𝑢, 𝑡) = 0.8 + 0.02 × 𝑇opt(𝑢) − 0.0005 × (𝑇opt(𝑢))2, 

𝑇𝜀2(𝑢, 𝑡) =
1.184

1+𝑒0.2×(𝑇opt (𝑢)−10−𝑇(𝑥,𝑡))
× 1

1+𝑒0.3×(−𝑇opt (𝑢)−10+𝑇(𝑥,𝑡))
, 

Intra-annual trends in grassland NDVI and temperature

The SOS and POP parameters were determined by 
smoothing and interpolating the NDVI time series, 
testing their seasonality, and taking the extreme 
values of their first-order derivatives for the image 
elements with seasonality

• Construction of high-temporal-resolution NDVI time-series datasets

• Construction of grass-yield estimation model based on NPP

GY = NPP
𝐶cf

× 𝑓biomass , 

𝑓biomass =
𝐶
𝐶+1

, 



Optimum temperature for grassland growth

Spatial distribution of optimum temperature for vegetation growth defined by different methods in 
2020 and the difference between Topt and Tpopt



Validation of the accuracy of the grass-yield estimation model

Comparison of the actual measured grass yields of the sample plots 
with the estimated results from the four grass-yield models



Temporal and spatial distribution characteristics of grass yield in Zhenglan Banner

Time series of grass yields in different grassland types estimated by NDVIhi-based grass-yield model and NDVImo+Topt-
based grass-yield model



Spatial distribution of annual grass yield 
per unit area in grassland

Spatial distributions of seasonal 
grass yield per unit area in 
grassland

Intra-annual variations of the average 
grass yields of different grassland types



(1) Advantages and reliability of the method

(2) Sources of estimation error

(3) Association between grassland production and seasonal grazing

Discussion



By fusing the advantages of the high spatial resolution and high temporal coverage of two sets of satellite data (GF-6 WFV
data and MODIS data), an NDVI time-series dataset with high spatiotemporal resolution was generated. This achieved
accurate extraction of grassland vegetation phenology information with high temporal and spatial resolution, and it thus
allowed definition of the optimum temperature for vegetation growth from a phenology perspective, i.e., the period from
the SOS to the period during which the NDVI maximum (the POP) is located. This enhances the theoretical basis of the
optimum temperature parameter in the model and minimizes the influence of anomalous NDVI maxima. Compared with
the original optimum temperature algorithm, the influence of the lag in grassland growth with respect to temperature is
also largely solved.
The correlation between NPP and the grass yield estimated based on the CASA model is very strong, and the correlation
values between the models before and after optimization and the measured grass yield reached above 0.75 and were
relatively close. The grass-yield model optimized by the optimum temperature was notably enhanced, and the overall
accuracy of the model’s grass-yield estimation was improved by nearly 15 percentage points. This was especially true in
the sandy shrub grassland and lowland meadow, where the improvement effect was most obvious.
The total annual grass yield of Zhenglan Banner in 2020 based on this method was 2.94 × 1012 g, and the annual grass
yield per unit area was 287.87 g/m2. The basic characteristics of the spatial distribution of the yield were similar the
distribution of grass types. Due to differences in the main vegetation types of the different grasses, the seasonal grass
yields of the different grassland types were somewhat different. However, overall, they all accumulated mainly in summer,
and growth in this season accounted for more than 80% of the annual grass yield.



Global Degradation Trends of Grassland and their Driving Factors
Since 2000

• Grassland degradation threatens Sustainable
Development Goals (SDGs) like poverty eradication, zero
hunger, and climate action.

• There's a lack of standardized methods to assess global
grassland degradation, hindering SDGs progress.

• Remote sensing and net primary production (NPP) offer
effective tools to monitor and understand grassland
degradation but require consistency and global
applicability. Climate change impacts and benchmarking
are key considerations.



Flowchart of the research method

l Calculation of the moisture-responded NPP (MNPP)
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Indicators and change trend
NPP

Significantly decrease Non-significant change Significant increase

MNPP

Significant increase

Significant negative 

correlation with MI

Degeneration

Fluctuation

Improvement

Other

Non-significant change Improvement

Significantly decrease

Significant negative 

correlation with MI
Fluctuation

Other
Fluctuation

Degeneration

l Standard for identifying trends in grassland degradation and improvement



l Grassland degradation and improvement degree

Categories Degrees Change rates（%）

Degrading

Very significantly degrading <-30.0

Significantly degrading -30.0~-20.0

Moderately degrading -20.0~-10.0

Slightly degrading -10.0~0

Improving

Slightly improving 0~10.0

Moderately improving 10.0~20.0

Significantly improving 20.0~30.0

Very significantly improving >30.0



Distribution of global grassland degrading and improving areas from 2000-2020 Area statistics by continent



Distribution of global grassland degrading areas in different
degrees from 2000-2020 and hotspots locations: Southern
Africa (region A); East African Plateau (region B), Northern
Asian Caspian (region C); Eastern Brazil plateau (region D);
Northern Bolivia (region E)

Distribution of global grassland improving areas in different
degrees from 2000-2020 and hotspots locations: Qinghai-Tibet
Plateau in China (region F), the Loess Plateau (region G),
central North America (region H), and the western Sahel in
Africa (region I); Northern La Plata (region J)



(a) 

Global grassland degrading (a) and improving (b) to different 
degrees on each continent

Global grassland degrading (a) and improving (b) proportion to 
different degrees in different climatic regions

(a) 

(b) (b)



Distribution of global grassland degrading driving factors Distribution of global grassland improving driving factors



Global grassland degrading (a) and improving (b) proportion of driving factors in different climatic regions



Precipitation and NPP variations
in degrading grassland hotspots

Precipitation and NPP variations
in improving grassland hotspots

(1) The trend of NPP and
precipitation is the same, and
the fluctuation of NPP was
mainly controlled by
precipitation.

(2) The overall trends of
NPP and precipitation are
consistent, but the segmental
interannual variability or the
degree of variation is not
identical.

(3) The trends in NPP and
precipitation are precisely
opposite.



(1) Mapping global grassland degradation and improvement.

(2) Irregular processes of global grassland degradation driven by climate change and human activities.

(3) Implications in grassland degradation trends studies and future opportunities.

Discussion



(1) Grassland degradation and improvement processes are happening globally, with an overall improvement trend. Improved

grassland area is 1.92 times larger than degraded grassland. Semi-humid and humid regions experience the least degradation.

(2) Africa faces significant grassland degradation, while Asia leads in grassland improvement. However, the global land

degradation crisis remains a serious obstacle to achieving Land Degradation Neutrality (LDN).

(3) Climate change and human activities are the main drivers of grassland degradation, accounting for 84.72% and 87.76% of the

combined effects, respectively. Human activities have reversed degradation in some regions, but extensive cultivation and poor land

management can worsen degradation.

(4) Priorities include long-term care of grassland degradation hotspots, targeted interventions, and sharing successful

management experiences to address the global land degradation crisis and contribute to Sustainable Development Goal 15.3 for a

land degradation-neutral world.

Conclusions



• Inform on the project’s schedule, planning & contribution of the partners for the following year

Ø validation of results 
Ø consultation with end users
Ø final reporting & publishing



Chinese Young scientists contributions in Dragon 5

Name Institution Poster title Contribution including period 
of research

Li Changlong Guangzhou College 
of Commerce

Characteristics of Vegetation Dynamic 
Changes in the Beijing-Tianjin 
Sandstorm Source Area in the Past 20 
Years

Mapping and dynamic 
monitoring of grassland types

Cui Hanwen IFRIT, CAF/AIR, CAS Generation of Daily Mid-high Spatial 
Resolution Surface Reflectance Dataset 
andits Application in Grassland 
Utilization Intensity Monitoring

Quantitative estimation of 
grassland ecological 

• Report on the level and training of young scientists on the project achievements, including plans for academic 
exchanges

Two student from University of Leeds will visit CAS and CAF in the following year.



• Report on the peer reviewed publications (nr. of papers, journal name and publication title) after 3 years of 
activity

1. Bin Sun, Pengyao Qin, Changlong Li, et al. Integrating vegetation phenological characteristics and polarization
features with object-oriented techniques for grassland type identification [J], Geo-spatial Information
Science(accepted)

2. Yan Ziyu, Gao Zhihai, Sun Bin, et al. Global degradation trends of grassland and their driving factors since 2000[J],
International Journal of Digital Earth. 2023, 16(1), 1661-1684



Thanks for your attention


