

Understanding snow accumulation dynamics in glacierized HMA catchments

Achille Jouberton^{1,2}, Thomas E. Shaw¹, Stefan Fugger^{1,2}, Evan S. Miles¹, Pascal Buri¹, Michael McCarthy¹, Yota Sato³, Koji Fujita³, Abdulhamid Kayumov⁴, Shaoting Ren⁵, Wei Yang⁵, Francesca Pellicciotti^{1,6}

¹Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland; ²Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland; ³Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan; ⁴Center for the Research of Glaciers of the Tajik Academy of Tajikistan, Dushanbe, Tajikistan; ⁵State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research (TPESER), Chinese Academy of Sciences, Beijing, China. ⁶nnstitute of Science and Technology Austria ISTA, Earth Science Faculty, Vienna, Austria. Corresponding author: Achille Jouberton (achille.Jouberton@wsl.ch)

Motivations:

Precipitation phase change has exacerbated glacier mass loss in High-Mountain-Asia (HMA)¹ and will continue to do so in the future.

Recent glacier mass loss in the Southeastern Tibetean Plateau was arritbuted to a change in precipitation phase during the monsoon months¹.

Contributors to recent mass loss

GMB = Glacier mass balance

Snowfall amounts strongly control glacier mass balance², and their estimate depend on the representation of precipitation phase.

Snowfall seasonality and sensitivity to warming:

Methods:

- Downscaled and bias-corrected ERA5-Land reanalysis (100m, hourly) at three catchments in HMA.
- Land-surface model T&C simulates glacier and snowpack dynamics using an energy-balance approach.
- Four precipitation phase parametrizations tested:
 - Single-Ta threshold ('Ta' = 2m air temperature [°C])
 - Dual-Ta threshold
 - Dynamic-Ta thresholds (Ding parametrization³)
 - Psychrometric energy balance (Pomeroy et al. 2013)

Perspective: Validating a precipitation partitionning scheme **at high altitudes is difficult** due to the lack of direct measurements, but can be constrained with more commonly measured variables (e.g. surface albedo, precipitation, snow depth). Example below at Parlung No.4 glacier

- The winter-accumulation regime glacier (Kyzylsu) **is less sensitive** to the parametrization's choice as well as to a 2°C degree warming.
- The summer accumulation-type glacier (Trakarding-Trambau) is **most sensitive** to +2°C warming.