

Aeolus

2023 DRACE SYMPOSIUM 3rd YEAR RESULTS REPORTING 11-15 SEPTEMBER 2023

[PROJECT ID. 58817]

[UAVS 4 HIGH-RES. OPTICAL SATS.]

REPORTING TIME: WEDNESDAY 13/09/2023

ID. 58817

PROJECT TITLE: Exploiting UAVs for validating decametric earth observation data from Sentinel-2 and Gaofen-6(UAV4VAL)

PRINCIPAL INVESTIGATORS: Yongjun Zhang, Jadunandan Dash, Yan Gong, Hu Tang, Xuerui Guo

CO-AUTHORS: Harry Morris, Gareth Roberts, Booker Ogutu, Shenghui Fang, Niall Origo

PRESENTED BY: Yan Gong

- Inform on the project's objectives
- Detail the Copernicus Sentinels, ESA, Chinese and ESA Third Party Mission data utilised after 3 years
- Detail the in-situ data measurements and requirements
- Provide details on field data collection campaigns and periods in P.R. China or other study areas
- Inform on the results after 3 years of activity
- Inform on the project's schedule, planning & contribution of the partners for the following year
- Report on the level and training of young scientists on the project achievements, including plans for academic exchanges
- Report on the peer reviewed publications (nr. of papers, journal name and publication title) after 3 years of activity

Background

- Vegetation biophysical variables such as Leaf Area Index (LAI), Canopy Chlorophyll content (CCC), Fraction of absorbed Photosynthetic Radiation (fAPAR) are important plant and ecosystem status indicators.
- Advances in sensing and retrieval techniques -> suitability in operational use
- Validation is crucial to ensure fit-for-purpose
- Field campaigns are logistically challenging and resource intensive
- Automated measurement the way forward
- UAV Remote Sensing multi images Radiation Calibration

The project's objectives: UAV4VAL

· e esa

- Evaluate the capability of UAVs as a source of reference data for validating decametric surface reflectance and vegetation products, (specific focus on Sentinel-2 and Gaofen-6)
- Transfer knowledge gained from existing ESA-funded projects on fiducial reference measurements (FRM), which focus on traceability and uncertainty evaluation in earth observation validation efforts
- Achieved through collection, processing, and analysis of ground measurements over European and Chinese sites, coinciding with UAV acquisitions

Project team

Dr Jadu Dash

Dr Yongjun Zhang Dr Yan Gong

Dr Gareth

Roberts

Dr Booker

Ogutu

Dr Yansheng Li

Hu Tang

Niall Origo

Rosalinda Morrone

Xuerui Guo

Luke Brown

Harry Morris

Timeline

The in-situ data measurements and requirements

	ESA Third Party Missions		No. Scenes		Chinese EO data	No. Scenes		
	1. Sentinel	2 MSI	10		1. Gaofen-6	6		
Campaign		Period	Parameters and equipment		Contr	Contribution		
Taizi Mountaii	n, China	31-10-2020	LAI-2200	C for LAI	collection			
(112°48′E-113°03′E,		01-11-2020	ASD spectrometer for Spectral data collection				Wuhan University	
30°48′N-31°02′N)		02-06-2021	DJI Phantom 4 for UAV images collection					
Luojia Square, China (114°21′E-114°22′E, 30°32′N-30°33′N)		19-12-2020	ASD spectrometer for Spectral data collection DJI Phantom 4 for UAV images collection			Wuha	an University	
Wytham Woods, UK (51.769265N, 1.329185W)		19-07-2021	SPAD for Digital her	for LCC collection l hemispherical photography(DHP)		Unive South Natic Labo	ersity of nampton, onal Physical ratory (NPL)	

ASD spectrometer

Taizi Mountain Hubei Province, China

- Deciduous broadleaf forest
 - (Oak and Maple)
- National Park
- Validation of SPOT 6 and GF 2 at site
- > 35 remote sensing papers at site

DJI Phantom 4

Taizi Mountain Hubei Province, China

- Surface reflectance and drone images
 - Ground Hyperspectral measurements (350 2500 nm)
 - DJI Phantom 4 for drone image collection
 - In-suit data collection-LAI-2200C

ASD Fieldspec 4

DJI Phantom 4

Wytham Woods, Oxford, UK

- Deciduous broadleaf forest
 - (Oak, Ash, Beech, Hazel, Sycamore)
- Managed research forest with ~75 years of ecological monitoring
- Canopy walkway, Flux tower
- > 200 RS papers at site

Wytham Woods, Oxford, UK

- leaf sampling and chlorophyll measure
- DHP measure
- $CCC = LCC \times LAI$

Digital hemispherical photography

SPAD Chlorophyll meter

Wytham Woods, Oxford, UK

- Sampling Strategy
 - 20 30 ESUs sampled
 - Adapted from VALERI methodology
 - Understory and overstory sampled
- LAI
 - 13 points/ESU
- LCC
 - 3 leaves/point
 - 6 replicates/leaf

Method: Overview

Step 1	Step 2	Step 3	Step 4	

Acquisition and processing of UAV imagery and in-suit biophysical measurements. LAI Inversion from UAV imagery through Vegetation Indices (VIs) regression model. VIs sensitivity test on a Radiative Transfer Model (RTM)-simulated dataset. Sentinel-2 LAI product validated by the UAV based LAI product.

Radiation calibration of UAV images Sentinel-2 retrieved LAI product from ESA SNAP software.

Radiometric Correction: Single image VS multiple images

The radiometric calibration methods suitable for a single image may become impractical for multiple UAV images.

During the flight of a UAV, each image may be influenced by:

- different exposure times
- different incident angles,
- different illumination conditions
- different turbulence.

• • • • • • •

The multi-scale UAV image joint radiation correction method

UAV image pixels (DN)

High-altitude image (450m)

Used as Reference image

Ground Measured Reflectance

The multi-scale UAV image joint radiation correction method

Histogram matching method

High-altitude image (450m)

After histogram matching

The multi-scale UAV image joint radiation correction method

- Linear regression with SIFT operator
- Linear regression with multiple area

Taking High-altitude image as a reference, the relative radiometric correction is made for each image

A Radiometric Correction Method Based on Block Adjustment

Geometric Correction Research: (photogrammetry)

 Using ground control points (GCPs) and tie points (TPs), block adjustment (BA) can effectively eliminate geometric errors.

Block Adjustment method used in Radiometric Correction?

 Radiometric calibration of multiple UAV images using only a small number of calibration blankets, thereby generating reflectance mosaics of the entire study area.

Method: Radiation calibration of UAV images

A Radiometric Correction Method Based on Block Adjustment

Method work flow

Radial Area Network Adjustment Algorithm

- Conversion relationship between DN value and reflectance
- Vignetting correction model
- Adjustment of light and dark differences between images
- Radiation area network adjustment
- Extraction of radial tie points
- Generation of stitched reflectance images

Radiometric Control Points (RCPs) : ground objects with known reflectance.

Radiometric Tie Points (RTPs):

ground objects with radiometric observations.

Fig. 2. Examples of (a) selection of RTPs from DSM. The parameters u_c and v_c are the intervals determined by the UAV image size and (b) distribution of RTPs on a UAV image. The red dots are the selected RTPs.

Radial Area Network Adjustment Algorithm: error equation

Reflectivity is an **intrinsic property** of ground objects. After radiation correction, the reflectivity of the same ground object should be the same.

Vignetting correction

$$V(u,v) = p_1(u-u_0)^2 + p_2(v-v_0)^2 + 1 = p_1u^2 + p_2v^2 + p_3u + p_4v + p_5$$

(u, v) Pixel coordinate

Radiation area network adjustment

$$V(u,v)DN_{ij} = a_i b \rho^a_{RTP,j} + b_i$$
$$V(u,v)DN_{ij} = a_i (a \rho_{RTP,j} + b) + b_i$$

 DN_{ii} DN value of radiation connection point j on image i

- $\rho_{RTP,j}$ Reflectivity of radiation connection point j
 - *a*,*b* Absolute correction parameters

 a_i, b_i Relative correction parameters

Radial Area Network Adjustment Algorithm: error equation

Radiation area network adjustment

 $v_{ij} = a_i(a\rho_{RTP,j} + b) + b_i - V(u,v)DN_{ij} \quad w_{ij}$

Using Taylor Formula to linearize the error equation as follows:

$$v_{ij} = v_{ij}^{0} + \frac{\partial v_{ij}}{\partial a} \Delta a + \frac{\partial v_{ij}}{\partial b} \Delta b + \frac{\partial v_{ij}}{\partial a_{i}} \Delta a_{i} + \frac{\partial v_{ij}}{\partial b_{i}} \Delta b_{i} + \frac{\partial v_{ij}}{\partial p_{1}} \Delta p_{1} + \frac{\partial v_{ij}}{\partial p_{2}} \Delta p_{2} + \frac{\partial v_{ij}}{\partial p_{3}} \Delta p_{3} + \frac{\partial v_{ij}}{\partial p_{4}} \Delta p_{4} + \frac{\partial v_{ij}}{\partial p_{5}} \Delta p_{5} + \frac{\partial v_{ij}}{\partial \rho_{RTP,j}} \Delta \rho_{RTP,j}$$

🖌 weight

Least squares adjustment, iterative operation

$$V = Ax - L, \quad W$$

 $\boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{W} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{W} \boldsymbol{L}$

The weight of radiometric tie points

The purity of RTP j in image i : the standard deviation σ_{ii} $p_{ii} = \sigma_{ii} / avg_{ii}$ avg_{ii} : the average of the DN values $\theta_{s,I}$: the solar zenith The weight of RTP j $w_{ii}^{l} = \exp(-3p_{ii}),$ $\theta_{v,ij}$: the view zenith angle of the RTP *j* in image *i* $w_{ij}^2 = -\exp(-(\theta_{v,ij} - \theta_{s,i})^2 / (2\sigma_{v,i}^2)) + 1.005,$ $\sigma_{v,i} = \sqrt{\frac{1}{n} \sum_{i} (\theta_{v,ij} - \theta_{s,i})^2}.$ Reduce the influence of BRDF The final weight

 $W_{ii} = W_{ii}^1 \cdot W_{ii}^2.$

(source: Peng W, et al. ,2023)

Parametric regression through Vegetation indices(VIs)

Formulas of the four VIs and the evaluation metrics for LAI-VI relationship modelling.

$$NDVI = \frac{\rho_{NIR} - \rho_{Red}}{\rho_{NIR} + \rho_{Red}}$$

$$SAVI = \frac{\rho_{NIR} - \rho_{Red}}{\rho_{NIR} + \rho_{Red} + 0.5} \times 1.5$$

$$ARVI = \frac{\rho_{NIR} - (2\rho_{Red} - \rho_{Blue})}{\rho_{NIR} + (2\rho_{Red} - \rho_{Blue})}$$

$$EVI = \frac{\rho_{NIR} - \rho_{Red}}{\rho_{NIR} + 6\rho_{Red} - 7.5\rho_{Blue} + 1} \times 2.5$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}$$
$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n - p}}$$
$$MAE = \sum_{i=1}^{n} \left| \frac{y_{i} - \hat{y}_{i}}{n} \right|$$
$$ME = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_{i} - \hat{y}_{i}}{y_{i}} \right) \times 100$$

Sentinel LAI map inverted by PROSAIL model

- Sentinel-2 images preprocessing Sentinel-2 reflectance images
- PROSPECT + SAIL model The relationship between canopy reflectance and LAI
- ANN model \longrightarrow LAI inversion

(source: Berger et al., 2018)

Gaofen-6 LAI map inverted by LUT

- Selecting VIs sensitive to LAI
 - Global sensitivity analysis of the PROSAIL model (NDVI, EVI, ARVI, SAVI)
- Generating LUTs
 - Reflectance-LUTs / VI-LUTs
- LAI retrieval based on LUTs
 - $fRMSE \rightarrow min$

Lookup table

(source: Wanxue Zhu et al., 2019)

Satellite LAI validation using Ground-measures and UAV data

- For ground-measured data (P1)
 - 10 m *10 m Sentinel-2 and 16 m * 16 m Gaofen-6 pixel contained the ground measurements
- For UAV data (P2 & P3)
 - Resampled to Sentinel-2 and Gaofen-6 spatial resolutions

Result: Radiation calibration of UAV images

Visual radiation calibration results from four different methods

Luojia Square

RBA

Taizi Mountain

Direct Mosaic

Result: Radiation calibration of UAV images

20

В

G

Results of Radiometric Calibration

RMSE

7.5e-02

5.0e-02

6.38 6.64

В

6.57 6.68

G

R

Band

Direct Mosaic Blending Color Balancing RBA

RE

NIR

Mean

37.0

32.0

R

Band

Direct Mosaic Blending Color Balancing RBA

RE

NIR

Mean

Result: Radiation calibration of UAV images

Optimal number of RCPs

Adding certain number (2 point pairs in our study) of the radiation control points can effectively control the accumulation and propagation of errors and improve the accuracy of radiation correction.

Influences of Vignetting Correction on Radiometric Block Adjustment

- Vignetting correction can effectively improve radiometric calibration accuracy.
- RBA method integrates

 radiation area network
 adjustment and vignetting
 correction operations to
 avoid step-by-step
 calculations without affecting
 accuracy.

Uncertainty Analysis

- INFLUENCE FACTORS AND THEIR UNCERTAINTY (%)
- Among them, the weights, geometric mismatching, and noise had a relatively large impact on the radiometric correction accuracy, while the equation solution had little effect on the calibration results.

Luojia Square					Taizi Mountain						
Influence factor	В	G	R	RE	NIR	Influence factor	В	G	R	RE	NIR
Weights	5.838	1.146	3.092	1.745	1.412	Weights	3.102	1.723	1.399	2.146	0.955
Geometric mismatching	2.926	1.045	2.491	0.713	1.143	Geometric mismatching	2.044	2.042	1.087	1.910	2.381
Noise	4.721	1.518	2.255	1.504	1.288	Noise	2.790	1.781	2.024	1.266	1.866
Equation solution	0.001	0.001	0.000	0.001	0.000	Equation solution	0.001	0.001	0.001	0.001	0.000
Total uncertainty	8.058	2.170	4.566	2.412	2.227	Total uncertainty	4.646	3.211	2.690	3.140	3.172

Result: LAI inversion from UAV imagery

UAV LAI maps inverted from UAV and Ground LAI

36

Sentinel-2 LAI map inversion from PROSAIL model

➤ Gaofen-6 LAI map inversion from LUT

Ground measurements vs. UAV-based LAI maps for validating satellite LAI retrievals

- Both the Sentinel-2 and Gaofen-6 LAI products perform moderately using UAV maps
- When we use UAV for validation, compared with ground validation methods
 - For Sentinel-2 LAI maps, lower MAE (≤ 0.5), ME (≤ 0.73) and RMSE (≤ 0.59) values were obtained
 - For Gaofen-6 LAI maps, the RMSE values were lower than 0.91 for all VI-based UAV LAI maps

Validation Mathad		Sentinel-2			Gaofen-6		
validation Method		ME	RMSE	MAE	RMSE		
LAI samples based on ground-measured	0.80	0.85	1.02	1.08	1.58		
UAV LAI maps generated based on NDVI	0.50	0.55	0.59	0.6.	0.77		
UAV LAI maps generated based on SAVI	0.48	0.73	0.58	0.70	0.89		
UAV LAI maps generated based on ARVI	0.48	0.55	0.58	0.59	0.76		
UAV LAI maps generated based on EVI	0.47	0.67	0.56	0.71	0.91		

Conclusion & Future Plan

Conclusion

- The RBA method can effectively improve the accuracy of UAV image radiation calibration.
- Gaofen-6 imagery showed great potential in estimating LAI through a LUT way by coupling the band wavelength with the radiative transfer model PROSPECT
- Compared the LAI validation results based on direct ground measurements and the estimated UAV-LAI map, significant improvement results were found with the high-resolution UAV-LAI map, RMSE reduced for Sentinel-2 and Gaofen-6 imagery.

Future plan

- The potential of Gaofen-6 to invert LAI using PROSAIL model
- The further acquisition of multispectral and even hyperspectral data from the UAV platform is expected.
- More fieldwork and communication in person from the collaborate institutes are planned.

Name	Institution	Poster title	Contribution including period of research
Xuerui Guo	University of Southampton	Vegetation Index Sensitivity Test Based on PROSPECT+SAIL Model – a Preliminary Test Under the UAV4VAL Project	
Harry Morris	University of Southampton	Using A Wireless Quantum Sensor Network To Monitor The Temporal Dynamics Of Vegetation Biophysical Parameters In A Mediterranean Vineyard	

Chinese Young scientists contributions in Dragon 5

Name	Institution	Poster title	Contribution including period of research		
Tang Hu	Wuhan University	Exploiting UAS for validating Sentinel-2 LAI map and inverting Gaofen-6 LAI map	data collection and data processing model establishment, data analysis, paper writing		
Yang Kaili	Wuhan University	Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season	data collection and data processing paper writing		
Zhou Cong	Wuhan University	Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index	data collection and data processing paper writing		
Yuan Ningge	Wuhan University	UAV Remote Sensing Estimation of Rice Yield Based on Adaptive Spectral Endmembers and Bilinear Mixing Model	data collection and data processing paper writing		
Peng Wanshan	Wuhan University	A radiometric block adjustment method for unmanned aerial vehicle images considering the image vignetting	data collection and data processing paper writing 41		

Gong Y, Yang K, Lin Z, et al. Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season[J]. Plant Methods, 2021, 17(1): 1-16.
 Zhou C, Gong Y, Fang S, et al. Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index[J]. Frontiers in Plant Science, 2022, 13: 957870.
 Yuan N, Gong Y, Fang S, et al. UAV remote sensing estimation of rice yield based on adaptive spectral endmembers and bilinear mixing model[J]. Remote Sensing, 2021, 13(11): 2190.
 Peng W, Gong Y, Fang S, et al. A Radiometric Block Adjustment Method for Unmanned Aerial Vehicle Images Considering the Image Vignetting[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023.