

5 SYMPOSIUM **3rd YEAR RESULTS REPORTING 11-15 SEPTEMBER 2023**

[PROJECT ID. 58573] THREE DIMENSIONAL CLOUD EFFECTS ON ATMOSPHERIC COMPOSITION AND AEROSOLS FROM NEW GENERATION SATELLITE OBSERVATIONS (3D CLOUD EFFECTS)

Dragon 5 3rd Year Results Project

WEDNESDAY 13 SEPTEMBER 2023

ID. 58573

PROJECT TITLE: THREE DIMENSIONAL CLOUD EFFECTS ON ATMOSPHERIC COMPOSITION AND AEROSOLS FROM NEW GENERATION SATELLITE OBSERVATIONS (3D CLOUD EFFECTS)

PRINCIPAL INVESTIGATORS: PING WANG¹, MINZHENG DUAN²

CO-AUTHORS: Victor Trees¹, Benjamin Leune¹, Congcong Qiao²

PRESENTED BY: PING WANG

- Inform on the project's objectives
- Detail the Copernicus Sentinels, ESA, Chinese and ESA Third Party Mission data utilised after 3 years (complete slide 4)
- Inform on the results after 3 years of activity
- Inform on the project's schedule, planning & contribution of the partners for the following year
- Report on the peer reviewed publications (nr. of papers, journal name and publication title) after 3 years of activity

Project's objectives

Detect the cloud shadows and

Analyze the impact of the 3D cloud effects on trace gas retrievals.

Use the (cloud) shadow and neighbour pixels to derive aerosol optical thickness and surface albedo.

Use 3D radiative transfer model simulations to understand the cloud effects on TROPOMI NO_2 products.

EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert "ftp"

ESA /Copernicus Missions	No. Scenes	ESA Third Party Missions	No. Scenes	Chinese EO data	No. Scenes
1. Sentinel-5P L1B, L2 (NO2, AAI, clouds)	8 mont hs full orbits data				
		1. Landsat-8	16	1.GF-2	30
		2.		2.	
		3.		3.	
	uutu	4.		4.	
2.		5.		5.	
3.		6		6.	
4.		Tabal		Total:	
5.		lotal:			
6.		Issues: No		Issues: NO	
Total:					
Issues: No					

Results: cloud shadow detection: example in Europe

Trees et al., 2022

- Processed 8 months of TROPOMI data for cloud shadow flags
- Cloud shadow flags have been used to reprocess the TROPOMI DLER product

Results: impacts of shadows on NO₂ retrievals: principle

Steps to retrieve NO₂ VCD

- fit slant columns (Ns)
- separate Tropspheric and stratospheric columns (Ns_trop)
- calculate airmass factors (AMF)
- calculate vertical column
- Nv_trop = Ns_trop/AMF_trop Small AMF leads to large NO₂ VCD

Figures taken from Emde et al., 2022 AMT

1D AMP SD AMP 1D NO_2 AMF is larger than 3D AMF in the shadows. TROPOMI uses 1D AMF, retrieved NO_2 VCD in the shadow should be lower than the real NO_2 VCD.

But Yu, Emde et al., 2022 did not find lower NO_2 in the shadows in TROPOMI NO_2 data.

No cloud shadow signature found in TROPOMI NO₂

How to understand it?

MONKI (MONte carlo KnmI)

PROGRAM main

MONKI (Monte Carlo KNMI) -- Version 1.0 * !* Three-dimensional radiative transfer simulation of sunlight !* reflected by an atmosphere-surface system following the Monte !* Carlo technique, fully taking into account the state of !* polarization of the light (Stokes parameters I, Q, U and V) for !* all orders of scattering. !* !* Atmosphere: - Rayleigh scattering of light by gaseous molecules !* - Mie scatterring of light by spherical droplets !* - Absorption of light by various gases (03) !* - Absorption of light by spherical droplets !* !* !* Surface: - Lambertian (reflecting the light isotropically and fully depolarizing) with specified surface !* albedo. !* !* Domain: - Cartesian arid !* - Cyclic domain in horizontal (x- and y-)directions !* - nx grid cells in the x-direction !* - ny grid cells in the y-direction !* !* - nz+1 grid cells in the z-direction !* Author: Victor Trees, January 2023 !* 1*

We have our own 3D RT model MONKI

AMF simulated with MONKI

SZA=75 degree, VZA = 30 degree, relative azimuth angle =0, surface albedo = 0.2, COT = 10, cloud at = 5-6 km

AMFs simulated with MONKI at different As

 $\theta = 60^{\circ}$

AMF at different cloud height h_c

Total AMF simulated with MONKI, possible explanations

AMF_geo = 1/cos(SZA) + 1/cos(VZA) Shadow effect in simulated total AMF, while no shadow effect in observed TROPOMI NO₂ VCD?

Simulations used a very high tropospheric NO₂ profile.

Simulation assumed homogeneous NO₂ in the domain.

In real scenes, NO₂ concentration is not as high as in the simulations.

NO₂ natural variation and precision of NO₂ product might mask some shadow effects.

Absorbing Aerosol Index (AAI)

The AAI indicates the presence of UV absorbing aerosols, like desert dust, smoke, volcanic ash.

AAI calculation: compute 340/380 nm reflectance ratio as compared to that of a purely Rayleigh atmosphere

$$R^{meas} = R_{340}/R_{380}$$

 $\mathbf{R}^{ray} = R^{ray}_{340} / R^{ray}_{380}$ at surface albedo As*

The As* should be calculated so that it produces $R^{ray}_{380} = R_{380}$

AAI on 31 March 2018

Absorbing aerosol index in cloud shadows

TROPOMI AAI, VIIRS band 07 sun-normalized radiances on 9 October 2018.

Aerosol index from 380 and 340 nm

VIIRS band M07 sun-normalisd radiances in each S5P scaled field-

With clouds, no aerosols, AAI is negative. In cloud shadows, AAI is larger.

$$AAI = -100 \cdot \left[log_{10} \left(\frac{R_{340}}{R_{380}} \right)^{meds} - log_{10} \left(\frac{R_{340}}{R_{380}} \right)^{calc} \right]$$

$$A_{s} = 0.1$$

$$A_{s} = 0.0$$

$$A_{s} = 0.1$$

$$A_{s} = 0.0$$

$$A_{s$$

COT= 5; cloud extent = 2-3 km (1st row), 5-6 km (2nd row), 8-9 km (3rd row)

A_s = 0.1, SZA = 30 deg VZA = 60 deg

MLS with O₃, $A_s = 0.0$, $\phi - \phi_0 = 0^\circ$, $\theta_0 = 30^\circ$, $\theta = 60^\circ$ MLS with O₃, $A_s = 0.0$, $\phi - \phi_0 = 0^\circ$, $\theta_0 = 30^\circ$, $\theta = 60^\circ$ MLS with O₃, $A_s = 0.0$, $\phi - \phi_0 = 0^\circ$, $\theta_0 = 30^\circ$, $\theta = 60^\circ$

 $A_{s} = 0.0$

Cloud shadow effect on Absorbing Aerosol Index: case study Nertherlands/Germany

x (km)

Results: AOD retrievals using shadows: principle

• Reflectance for a shadow pixel

$$I_{s} = I_{path} + \frac{t_{dif}(\mu_{0})T(\mu_{v})A}{(1 - AS)}$$

- Reflectance for a bright pixel $I_{b} = I_{path} + \frac{\left(e^{-\tau/\mu_{0}} + t_{dif}(\mu_{0})\right)T(\mu_{v})A}{(1 - AS)}$
- Assume same surface albedo at the two pixels

$$\frac{I_{b}-I_{path}}{I_{s}-I_{path}}=\frac{e^{-\tau/\mu_{0}}+t_{dif}(\mu_{0})}{t_{dif}(\mu_{0})}$$

• Minimize the difference to get AOD

$$\varepsilon = \frac{I_b - I_{path}}{I_s - I_{path}} - \frac{e^{-(\tau_r + \tau_a)/\mu_0} + T_{dif}(\mu_o)}{T_{dif}(\mu_o)}$$

Duan , 2001

- 1 atmospheric path
- 2,4 surface reflection
- 3,5 inter-action between surface and
- atmosphere

Results: aerosol retrievals using cloud shadows: Landsat-8 data

OLI / Landsat 8, 11 Feb.,2013

Band	Wavelength (um)	Spatial Resolution (m)
B01	0.43 ~ 0.45	30
B02	0.45 ~ 0.51	30
B03	0.53 ~ 0.59	30
B04	$0.64 \sim 0.67$	30
B05	$0.85 \sim 0.88$	30
B06	$1.57 \sim 1.65$	30
B07	2.11 ~ 2.29	30
B08	$0.50 \sim 0.68$	15
B09	$1.36 \sim 1.38$	30
B10	10.60 ~ 11.19	100
B11	11.50 ~ 12.51	100

Screening and selection of cloud shadows

· e esa

Shadow location

44°N Very Good conventional The Good QA 43°N accurate AOD. 0 0 cloud shadow The 0 Marginal 0 103°E 104°E 105°È 0.0 0.1 0.2 0.3 0.4 0.5

Quality Flag ★ AERONET site

Figure1. The AOD (550 nm) distribution map provided by the MODIS aerosol product, the base map is the LANDSAT8 image on June 23, 2017, the squares in the grid represent the QA of the AOD retrievals, and the dots represent the AOD retrieved by the cloud shadow.

AOD (550nm)

aerosol satellite retrieval algorithms in cloudy areas find it challenging to provide relatively

method can effectively enhance the efficiency of AOD retrieval in cloudy regions.

29

Figure2. The AOD obtained by cloud shadow algorithm inversion on 16 remote sensing images, MODIS aerosol products and AERONET site data.

 The AOD obtained by the cloud shadow algorithm is very close to the ground-based sun photometer data, and the deviations are basically within ±0.05.

European Young scientists contributions in Dragon 5

Name	Institution	Poster title	Contribution including period of research
Benjamin Leune	KNMI	Observing and Simulating 3D Cloud Effects in the S5P NO2 Product	Analyzed the 3D model simulated NO2 observations and TROPOMI NO2 data for cloud effects.
Victor Trees	KNMI/TU-Delft		Developed MONKI 3D radiative transfer model, simulated AAI and NO2 measurements from TROPOMI with the 3D model. Analyzed the simulated AAI and NO2 observations
			Submitted manuscript about clouds disappearing during eclipse.

Chinese Young scientists contributions in Dragon 5

Name	Institution	Poster title	Contribution including period of research
Congcong Qiao	IAP	A New Algorithm for Deriving Aerosol Optical Depth Over Cities Using the Building Shadows of High-resolution Satellite Imagery	Aerosol optical thickness retrievals from GF-2 and Landsat-8
			Submitted manuscript to GRL about deriving AOD over cities using the building shadows

- Publish the AOD retrieval paper using GF-2 and Landsat-8 scenes (submitted)
- Apply automatic shadow detection algorithm on GF-2 and Landsat-8
- Finalize and publish the analysis of clouds shadows in S5P NO2 products (in preparation)
- Finalize and publish the analysis of clouds shadows in S5P AAI products (in preparation)
- Improve NO2 retrievals at high spatial resolution (to be done)

Qiao, C., Liu, S., Huo, J., Mu, X., Wang, P., Jia, S., Fan, X., and Duan, M.: Retrievals of Precipitable Water Vapor and Aerosol Optical Depth from direct sun measurements with EKO MS711 and MS712 Spectroradiometers, , Atmos. Meas. Tech., 2022.

Qiao et al., A Novel Algorithm for Deriving Aerosol Optical Depth over Cities Using the Building Shadows of High-resolution Satellite Imagery, submitted to GRL, 2023.

Trees, V., Wang, P., and Stammes, P.: Restoring the top-of-atmosphere reflectance during solar eclipses: a proof of concept with the UV Absorbing Aerosol Index measured by TROPOMI, Atmos. Chem. Phys., 21, 8593–8614, https://doi.org/10.5194/acp-21-8593-2021, 2021.

Trees, V. J. H., Wang, P., Stammes, P., Tilstra, L. G., Donovan, D. P., and Siebesma, A. P.: DARCLOS: a cloud shadow detection algorithm for TROPOMI, Atmos. Meas. Tech., 15, 3121–3140, https://doi.org/10.5194/amt-15-3121-2022, 2022.

Trees et al., Rapid cloud dissipation during solar eclipses due to land surface cooling, in review in nature Communications Earth & Environment, 2023.