

Monitoring ghg from space: TanSat-2 city monitoring and validation

Yi Liu, Dongxu Yang et al.

Content

1. TanSat-2 city monitoring simulation

2. GHGs surface measurement and Validation

TanSat-2 mission

Background figure: Riebeek, Holli (16 June 2011). "The Carbon Cycle". Earth Observatory. NASA

LEO satellites option

Multiple satellites

XCO₂: 1 ppm precision XCH₄: 8 ppb precision

MEO satellites option advantages in global coverage and revisit period

Bands	NO ₂ Band	O ₂ A Band	Weak CO ₂	Strong CO ₂	
Geophysical P.	NO ₂	O ₂ , SIF	CO ₂ , CH ₄	CO2	CH ₄ , CO
Range /µm	0.4-0.49	0.747-0.773	1.590-1.675	1.990-2.095	2.305-2.385
Width /nm	90	26	85	105	80
SR /nm	0.6	0.12	0.3	0.35	0.25
SSI	3	3	3	3	3
TanSat SNR@Lref (photons/s/nm/cm2/sr)	800@2.4E13	620@6.4E12	520@2.1E12	480@1.8E12	150@8.5E11
CO2@Lref (photons/s/nm/cm2/sr)	500@1.3E13	330@6.4E12	400@2.1E12	400@1.8E12	

MEO satellite design

Foucs on the FF emssions

Orbit characters	Value
Perigee	522km
Apogee	7840km
Inclination	116.565°
Lat @ Apogee	35°N
repeat cycle	1day
delta Resolution	0.87km
Swath	2900km
OZA	<30°

Motivation

Inventory: small-scale flux estimates are aggregated together to form a total emission inventory using activity data (energy consumption, population density, traffic data and local air pollution reporting) and simulation tools

Inventories are prone to systematic errors and their uncertainties are not well known

Motivation

- \succ Limited ability of inventory for assessing the seasonality of anthropogenic CO₂ emissions
 - \blacktriangleright Atmospheric CO₂ measurements are valuable to verify emissions inventories

Motivation

TanSat-2 is planned to be launched in 2025 to measure column-averaged $CO_2(XCO_2)$ at 3000 km wide across-track swaths, with a pixel size of 2 km × 2 km.

The precision of satellite sampling is expected to be less than 1 ppm.

X-STILT and ODIAC at 1 km resolution are used to simulate synthetic data and develop an urban CO₂ inversion system.

Methods: Observing System Simulation Experiment (OSSE)

To minimize the mismatch between observed and modeled [CO₂] by optimizing the prior fluxes

Results: a case study in Beijing

- ERA5 total cloud cover data are used to identify cloud-free samples of TanSat-2.
- > Outside the growing season, assimilating cloud-free TanSat-2 data can have a 20-30% reduction in prior flux errors.

Results: comparison of flux inversion in different cities

- \succ Test the impacts of sampling patterns and XCO₂ retrieval errors on reducing prior flux errors.
- Correction in systematic flux errors is sizable, subject to unbiased satellite sampling and favorable meteorological conditions (less cloud cover and low wind speed).

Table 1. Reduction of flux bias and random error (RE) and overall correction (OC) of integrated urban CO₂ emissions in Beijing (BJ), Jinan (JN), Los Angeles (LA), and Paris (PR). Units are %.

City	Bias	RE	OC
BJ	75	28	46
JN	68	19	45
LA	40	25	32
PR	56	23	37

Results: comparison of flux inversion in different cities

Reduction in systematic and random flux errors is correlated with the signal-to-noise ratio of satellite measurements, which is 2.8 (BJ), 2.1 (JN), 0.7 (LA), and 0.1 (PR), related to different magnitudes of error reduction.

Figure 4. Probability density of synthetic X_{CO_2} enhancements over Beijing (BJ), Jinan (JN), Los Angeles (LA), and Paris (PR) (a) and the corresponding measurement errors (b). The values after the city name are the mean (first number) and standard deviation (second number), and units are ppm.

Figure 5. Flux error reduction in Beijing (a), Jinan (b), Los Angeles (c), and Paris (d).

- > A systematic measurement error of 1 ppm would significantly degrade emission estimates inferred from satellite data
- The scenario of 4 km resolution (127 OBS) with 1 ppm uncertainty has similar error reduction to the scenario of 8 km (76 OBS) with 0.75 ppm random error, indicating better measurement precision can partially compensate for lower observation density.

Figure 8. Correction of flux bias with the change of observation bias in Jinan (a) and reduction of spatially-averaged random flux error with the change of observation uncertainty under different sampling resolutions in Jinan (b). The numbers in parentheses are the number of observations.

Content

1. TanSat-2 city monitoring simulation

2. GHGs surface measurement and Validation

Background and significance of the research

> Greenhouse gases(GHG) (CO_2 , CH_4 , N_2O , CFC...)

https://commons.wikimedia.org/wiki/File:Atmospheric_Transmission-en.svg

GHG concentration measurement techniques

Challenges in satellite remote sensing

Bias correction of satellite data

OCO-2 ATBD

-2 🗆 0

50

100

Altitude SD [m]

150

Principles of ground-based FTIR measurement

record direct solar radiation, the spectral resolution can up to 0.003-0.5 cm⁻¹ principle: Michelson Interference

Introduction to the International Observation Networks

Detection of Atmospheric Composition Change – the Infrared Working Group

NDACC IRWG

- mainly Bruker IFS 120HR/125HR •
- thermal infrared 800 4800 cm⁻¹ •
- $0.0036 0.005 \text{ cm}^{-1}$ •
- profile/column concentration
- single measurement time ~10 mins •

Total Carbon Column Observing Network

TCCON

- Bruker IFS 125HR
- near infrared 4800 16000cm⁻¹
- 0.02cm⁻¹
- column concentration
- single measurement time 3 mins

COllaborative Carbon Column Observing Network

COCCON

- Bruker EM27/SUN
- near infrared 4800 12000cm⁻¹
- 0.5cm⁻¹
- column concentration
- single measurement time 1 min

Time series of column-average dry-air mixing ratio of CO₂, CO, and CH₄ based on the TCCON network

- The concentrations of CO₂, CH₄ increase yearly.
- The concentration of CO shows a decreasing trend.
- Lack of observations in South America, Africa, South-Central Asia (Western China)

COCCON

Airborne

Shipborne

Urban networking observation experiment

Calibration TCCON/COCCON to the WMO standard

FTIR and AirCore Campaign

Satellite validation regionally

Two FTIRs (Xianghe and Beijing) are applied to validate the spatial gradient observed by the OCO-3 SAMS XCO2 measurements (R =0.82)

Zhou et al., 2022

G-b FTIR measurements support model verification

East Asian methane emissions inferred from highresolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis Ruosi Liang^{1,2,3}, Yuzhong Zhang^{2,3}, Jingran Liu^{1,2,3}, Wei Chen^{1,2,3}, Pelxuan Zhang^{2,3,4}, Culhong Chen⁵, Huiqin Mao⁵, Guofeng Shen⁶, Zhen Qu⁶, Zichong Chen⁷, Minqiang Zhou⁶, Pucal Wang⁸, Robert J. Parker⁶, ¹⁰, Hartmut Boesch^{9,10}, Alba Lorente¹¹, Joannes D. Maasakkers¹¹, and Ilse Aben¹¹

The model column concentrations after assimilation with GOSAT are more close to TCCON measurements (Xianghe and Hefei) than TROPOMI.

TROPOMI XCH₄ may still have a bias over China.

FTIR instruments @ IAP

Instrument	Bruker 125HR	Bruker EM27/SUN
Location	Xianghe	Beijing Periphery
Observation mode	TCCON + partly NDACC (InSb)	COCCON
Operational state	normal	3 operational, 1 laboratory

Currently, one Bruker 125HR and four Bruker EM27/SUN spectrometers are available. Four EM27/SUN are mainly used for regional measurements in Beijing and

surrounding areas and for organizing field observation experiments.

TCCON (Xianghe site)

become a TCCON standard station in September 2021

• TCCON established harmonized standards for ground-based GHG remote sensing measurements (spectral signal-to-noise ratio, observation precision of meteorological parameters, retrieval algorithm, data quality control, etc.)

TCCON Xianghe site - Time Series

Time series of column-average dry-air mixing ratio of carbon dioxide, methane, and nitrous oxide (XCO₂, XCH₄, XN₂O)

2018-07

2019-01

2019-07

2020-01

2020-07

2021-01

2021-07

2022-01

2022-07

The concentrations of XCO_2 , XCH_4 , XN_2O keep increasing.

	Xianghe TCCON	Mauna Loa
CO ₂	1.916ppm/year	2.38ppm/year
CH_4	12.31ppb/year	14.37ppb/yea r
N ₂ O	1.139ppb/year	1.178ppb/yea r

Yang, Zhou* et al., 2020 ESSD; Zhou et al., 2022, RS Zhou et al., in preparation

Yang, Zhou* et al., 2021 ACP;

Daily and seasonal variations in near-surface CO2

CO₂ concentration 380**____**201810 201901 201904 201907 Year-month high in winter and low in summer; associated with vegetation growth status

high at night and low at day; associated with boundary layer changes

EM27/SUN-inter-comparison

4 EM27/SUN (SN #095/#106/#109/#110) operated on the top floor of IAP-CAS

XCO₂, XCH₄, and XCO observed by four EM27/SUN measurements on 21 May 2019

- There are discrepancies between EM27/SUN measurements, especially for XCO.
- Inter-instrument error should be corrected before organizing regional observation experiments.

EM27/SUN-125HR parallel comparison

✤ high correlation between EM27 and TCCON (R=0.97)

EM27/SUN– Observational experiments

- In August 2021, the observation experiment of EM27/SUN at Golmud, Qinghai was organized;
- Aims of the experiment: validate satellite measurement errors; analyze variations of column concentrations of $CO_2/CH_4/CO$ at Golmud

experiment at Golmud

Combiningremotesensingmeasurementsandatmospherictransportmodels,transportofCH4highvaluesfromIndiawasobservedinQinghai.

Remote sensing instruments at Xianghe (IAP)

- Band: cover UV, VIS, IR
 - pollutant gases, greenhouse gases, aerosols,
 - near-surface, troposphere, stratosphere
 - Strong international collaboration, e.g., TCCON, GAW, COCCON, AERONET...

Exchange and visiting

- Dr. Yang and Dr. Wang visiting University of Edinburgh (April- July 2023)
- Dr. Hakkarainen visiting Institute of Atmospheric Physics, CAS (Septemper 2023)
- Group meet at IMNU (Septemper 2023)

ID. 59355

Outcomes of cooperation

TanSat city and hotspot emissions TanSat coordinated with Sentinel-5P

Yang D., Hakkarainen J., Liu Y., et al., 2023

ID. 59355

ID. 59355

Outcomes of cooperation

Tropical methane emissions, nearly 60% of global totals, explain 84% of global atmospheric methane growth rate
 Sea surface temperature (SST) variations could be used to help forecast variations in global atmospheric methane

On going and future cooperation

- TanSat-2 and CO2M cooperation and coordination in future
- New CO2 and CH4 retrieval algorithm development
- New methods for emission estimation from plume obsveration measurement
- Atmospheric inversion of CO2 and CH4 for contribute Global Stocktake

GHG MOST-ESA meeting

TanSat-2 OSSE and design

Dragon 5 3rd Year Results Reporting

Thank you!