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2020 AEGEAN SEA CASE STUDY

While reduced intensity geomagnetic anomalies are believed to have 
some precursive relationship to earthquakes (Li,  et al. 2022), for the 
most part, it is only the high and low-intensity anomalies that are of 
interest to us. Therefore, for this case study it will be necessary to ap-
ply the kNN and allclose function, for anomaly detection and location, 
respectively. The case study in question focuses on the magnitude 7 
Aegean Sea earthquake (also known as the Greek earthquake) , which 
occurred in 2020. The Dobrovolsky radius (10^{0.43*M}km) was used 
to set the extent of the area of study (and as a result the amount of 
data to be considered) and gives us radius of ~1023.2929 km. For the 
purposes of our study, we will be using VFM product, as it contains the 
most intact data.

Figure 4: Geomagnetic anomalies from SWARM satellite data collect-
ed over a period of 3 years.

In order for progress with geomagnetic anomaly detection for seis-
mic precursors to begin, a number of prerequisites must be estab-
lished. For instance, tracks must be within ±50° geomagnetic latitude, 
and the field must be in a state of low activity, and so forth. However, 
following these guidelines reduces the amount of data significantly, 
(See Figure 4). To overcome this, the author suggests using a glob-
al dataset and/or different parametres, which may not even include 
geomagnetic data.

Figure 5: The Dobrovolsky radius plot of the Aegean Sea earthquake.

The geomagnetic Dobrovolsky radius plot of the Aegean Sea earth-
quake reveals a number of anomalies over a 3 year period preceed-
ing the earthquake. These often appear in rapid bursts along satellite 
tracks. No anomalies appeared directly over the epicentre, but this is 
likely due to the lack of useable data. Furthermore, it appears that a 
number of these anomalies occur over populated regions, suggesting 
a potential anthropogenic source for the electromagnetic signals, in 
some of those cases.
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EMPLOYING DEEP Q-NETWORKS FOR ANOMALY 
DETECTION OF SWARM SATELLITE DATA & BEYOND

ABSTRACT

This research focuses on a proposed approach using Q-Learning to 
detect anomalies in space data. The method uses bandpass and notch 
filters and then employs Q-Learning to search within these bounds for 
anomalies. In the simplest incarnation, the upper and lower bounds 
are defined by user input, leading to a program with six parametres. 
To automate the upper and lower bounds, a second approach em-
ploys a series of filters; such as  a non-Conformity measure, like kNN 
or Histogram bins, the allclose function, and the difference blending 
equation. The average of the differences of the difference blending, 
as well as the STD, help to obtain the ranges of the high and reduced 
intensity anomalies. These ranges are passed onto the Q-Learning al-
gorithm as band-pass and notch filters. This method can also be used 
to automate the input variable of Matrix Profiles. For this reason, the 
results of the Q-Learning method are compared with Matrix Profile 
method. The poster also includes a case study using a non-Confor-
mity measure on SWARM satellite data of magnetic anomalies taking 
place in the lead up to the 2020 Aegean Sea Earthquake. This applica-
tion employs the Dobrovolsky Radius, as well as the kNN and allclose 
method outlined in the automated version of the Q-Learning Anom-
aly Detection Method.

INTRODUCTION

Anomaly detection (or Outlier Detection) has traditionally been solved 
by mathematical, statistical methods and Machine Learning meth-
ods, like kNN, K-means, iForest, and ARIMA. However, the problem 
of anomaly detection has become increasingly challenging with the 
drastic shift in the size and data volatility of databases. To address this 
problem, researchers have turned to Deep Learning methods, such 
as ANNs, RNNs and LSTMs. However, since these models are all highly 
domain specific and do not work well with large-scale time series, re-
searchers are now turning to Reinforcement learning and Deep
Q-Networks (or Q-Learning). Q-Learning is a branch of Reinforcement 
Learning, which utilises an agent to take actions (i.e. move position/
state) based on its immediate policy to achieve maximum reward.

Previous research in this area (Alavizadeh et al. 2022; Zhang, L. et al. 
2022) have used a Deep Q-Learning based approach for cyber security 
applications. A new time series anomaly detection method, which em-
ploys deep reinforcement learning (DRL) and active learning has been 
developed by Wu, T. & Ortiz, J. (2021) “to efficiently learn and adapt to 
anomalies in real-world time series data”. The proposed Q-Learning 
method, in this research, is capable of discovering anomalies in time 
series data, without the need for Active Learning, meaning that it is a 
marked improvement on previous methods.

OBJECTIVES

The aim of this research is to apply Q-Learning and Deep Q-Networks 
to detect both high and low-intensity anomalies in time series data. 
The study area includes detecting anomalies in SWARM satellite data 
for use in the prediction of earthquakes, but could also concievably 
be used in other areas.

METHODOLOGY

In the simplest version, a user inputs the range of the notch and band-
pass filters, which establishes the extent of the rewards on the Q-Table. 
When the agent begins to explore the environment, it collects all of 
the rewards and penalties until it reaches the notch filter, which is the 
end of that round. At this point, it back propagates using the Bellman 
Equation and calculates all of the reward values for the QTable. Using 
the basic Q-Learning algorithm, it was hoped that the Bellman Equa-
tion would be capable of detecting the band-pass, as well as the notch 
filters, creating a kind of planar wave or quadratic curve. However, this 
was not the case. Instead, the Bellman equation cascades back down 
the through the reward states and creates an essentially linear gradi-
ent, which smooths out the band-pass filter . The Bellman equation is 
effectively a linear equation, since it contains no exponents.

To eleviate this situation, it is necessary to split the data up into 3 parts 
(along the y-axis). The first split separates the first gradient (or reward 
space) from the other two. The Bellman equation can run on this gra-
dient and return the correct values. Similarly the other two gradients 
can be separated from one another and the same Q-Learning process 
can run on both to establish their respective gradients. Finally, the 
three separate tables can be stitched back together to create a kind of 
planar wave (See Fig 1). The values in the wave can be averaged, so as 
to become more smooth, or alternatively a single line of data can be 
processed, which is also much faster. This planar wave is then applied 
to the data, and this selects for the anomalies. More than this, it offers 
a kind of fuzzy logic result. Anomalies and normal data are not mere-
ly classified as 1s and 0s, respectively, but are given a sliding scale of 
confidence, which can be leveraged to filter the results still further.

 

Figure 1: : The Amplitude Index Reward Space that results from the 
Q-Learning algorithm (left) and the averaged or homogenised ver-
sion (right). Amplitude is in the y-axis, index is the x-axis, and reward 

is in the z-axis.

AUTOMATING THE RANGES

Having the user set the ranges for the Q-Learning process is not ideal, 
because there is nothing to say that this user will even have the ap-
propriate skillset to be able to determine those ranges adequately. 
Therefore, we can employ a variety of statistical and machine learning 
methods to carry out this task for us. The first step is to use some form 
of non-Comformity measure. A Histogram Bin approach is advised for 
larger data sets (over 10,000 observations), but for smaller datasets we 
can use kNN. In this example, we apply kNN to our normalised dataset 
(A) and then find the location of the anomalies using the allclose func-
tion.  The data set in question is randomly generated consisting of 8 
high intensity anomalies and two reduced intensity anomalies.

Next the difference blending equation (abs(1 - (1 - A)) is applied. This 
allows the kNN algorithm to detect the singularities (beginnings and 
endings) of the reduced anomalies with a high degree of confidence. 
This dataset is referred to as k. The next phase is characterised by the 
discovery of the reduced intensity anomalies, as pretext for the cre-
ation of the bounds of the bandpass filter. To begin with, the differ-
ence between each adjacent element in k are taken. The mean (v) and 
standard deviation (z) of this new array p is then calculated. Boolean 
conditions are established to meet criterion: i - z > z, where i is the val-
ue being evaluated and z is the standard deviation of the differences 
in k, and this creates a list vg. A similar boolean condition criterion: i > 
(v + z), where i is the value being evaluated, creates vg1. The two lists 
vg and vg1 are then combined using the AND operator to create vg2, 
which is then NOTed and used as a mask on list p to create mx1. Final-
ly, the mean value (y) of the masked array is obtained. This value can 
be used to automatically tune Matrix Profiles for the optimum detec-
tion of anomalies and works especially well for ECG data (See Fig 2).

Figure 2: This figure shows the automatic optimisation results of the 
Matrix Profile algorith using ECG benchmark data. 

The next step is the initialisation of a numpy array of zeros: val = 0_n, 
where n is the length of the random dataset. A double for loop through 
the elements of the array containing the index values of the anoma-
lies seen in k creates slices equivalent to the magnitude of the mean 
v, which is the average of the differences in k. These slices or arrays are 
called mp1 and mp2. It then compares these values using the numpy 
function np.allclose(), which results in a boolean array named mp3. 
The boolean values are converted to integer values:

The integer boolean values are repeated, so that they are the same 
length 

where N is the length of the arrays mp1 and mp2 . The various arrays 
are then cumulatively added in an element-wise fashion:

where v is the average of the differences in k. This adequately detects 
the reduced intensity anomalies. From here, the range of the reduced 
intensity anomalies can be discovered and added to our ranges of 
bandpass/notch filters.

COMPARATIVE STUDY

In this section, we compare the results of our earlier Q-Learning algo-
rithm using user inputs (top) to the Matrix Profile algorithm (bottom), 
using the NYC Taxi cab dataset as a benchmark.

It is quite clear that based on these results there is some conformity, 
but also some disagreement between the two approaches. The au-
thor would suggest using a rolling average on the dataset to improve 
upon the level of conformity in the results.


