Green Attack or Overfitting? Comparing Machine-learning-based and Vegetation-index-based Methods to Early Detect European Spruce Bark Beetle Attacks Using Multispectral Drone Images

OBJECTIVE

- Quantifying the detectability of the attacked trees with different duration of infestations
- Comparing machine learning methods with VIs.
- Testing their transferability on untrained areas.

METHODS

>Experimental forests

- A controlled experiment
- Pheromone dispensers in 24 plots
- 977 spruces monitored, 208 spruces attacked
- Weekly field inventory
- Holes on the barks, discoloration, defoliation

Number of attacked trees recorded every week
>Drone images

- DJI M210 with MAIA S2 camera
- Multispectral drone images, 9 bands as Sentinel-2
- 80 m above the ground, 0.04 m resolution

Radiometric reference target, DJI M210 drone, and MAIA S2 multispectral camera

-Segmented trees and sample size

- Marker-controlled watershed segmentation
- Group tree segmentations with the same durations of infestation.
- 486 segmentations (samples).

$>$ Training and testing methods
- Random Forest (RF), Linear Discriminant Analysis (LDA)
- Vegetation indices (VIs)
- All bands, four bands, and VIs as input to RF and LDA
- Validation A: 90% training data and 10% testing data
- Validation B: training on 5 stands and test on the other one stand

RESULTS AND CONCLUSIONS

- RF and LDA with multiple variables showed overfitting and low transferability on untrained area.
- Using single VIs showed higher accuracy and robustness.
- Infestations with <5 weeks showed very low detectability.
- Testing on untrained area is crucial to show the transferability of a model.

Kappa coefficient of the RF and LDA models using different variables when training on 5 stands and testing on the remaining stand.

Kappa coefficient of the RF and LDA models using different variables when variables when training and testing on 90% and 10% of all trees, respectively

