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I. Introduction
nObjective

Upgrade and develop methodologies to retrieve quantitative sea ice information 
including measurements of thickness, drift, concentration, and detection of icebergs.
Ø Satellite data: Sentinels, ALOS-1/2, SMOS, CryoSAT-2, CFOSAT; HY-2, GF series
Ø Arctic, Antarctic and regional sites with seasonal ice cover
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II. Main Results

1. Sea ice classification with multi-frequency SAR data during freezing 

and melting period

2. Sea ice surface and bottom morphology observation with SAR data

3. Sea ice drift detection with FY-3D microwave radiometer data

4. Snow depth retrieval over sea ice using microwave radiometer data

5. Analysis of decadal changes of ice in the Bohai Sea with GOCI data



1. Sea ice classification during melting period with SAR data
nObjective

Ø Current studies primarily focus on SAR sea ice classification during the freezing-up period

Ø Surface meltwater can affect the identification of sea ice types.

Ø The use of SAR for type identification during melting ice may be a problem.

Assessment of sea ice classification capabilities during melting period 
using airborne multi-frequency PolSAR data.



nAirborne Multi-frequency PolSAR data
Ø Time(UTC): 2022-02-27 06:22:54

Ø Frequency: L/S/C

Ø Resoultion: 1/1/0.5 m

Ø Flight altitude：4710 m

Ø Incidence angle: 31°~34°

Ø Temperatures: 6~10℃

Ø Wind speed: 3~8 m/s

C-band

S-band

L-band



nSentinel-2 MSI data

UC Time: 2022-02-27 02:36:39
4-hour ahead of SAR data

Open water, OW

Melting grey ice, GiW

Grey ice, Gi

Melting grey-white ice , GwW

Grey-white ice, Gw

Visual interpretation

C-band

S-band

L-band



nMethod
The sea ice type discrimination ability of 51 polarization features in 3 bands was evaluated

Separability Index
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polarization 
decomposition 

based scattering 
model

Freeman-Durden 
decomposition

Surface Scattering(PS), Double Bounce 
Scattering (PD), Volume Scattering (PV)

Yamaguchi 
decomposition

Surface Scattering(PS), Double Bounce 
Scattering (PD), Volume Scattering (PV), 

Helix Scattering（Ph）

H/A/!𝜶
decomposition

Eigenvalue(l1, l2, l3), Eigenvector (P1, P2, P3) , Polarization 
scattering entropy(H), Eigen component (β, δ, γ ), 

Anisotropy(A, A12), Shannon entropy(SE, SEP, SEI),
Single bounce eigenvalues relative difference(SERD), 

Double bounce eigenvalues relative difference(DERD), 
Polarization fraction (PF), Polarimetric asymmetry (PA), Radar 

vegetation index (RVI), Pedestal height (PH), Alpha 
approximation (!𝜶), Consistency correlation coefficient(CCC),  

Covariance matrix diagonal elements (C11, C22, C33)

Other parameters
Span of coherency matrix T3(Span)、

Polarization correlation coefficient(r12, r13, r23)



nL-band

OW-Gi OW-GiW OW-Gw OW-GwW Gi-GiW Gi-Gw Gi-GwW GiW-Gw GiW-GwW Gw-GwW Ice Type
SE 0. 26 1. 54 3. 57 2. 88 1. 79 3. 26 2. 53 5. 42 5. 06 1. 16 2. 75

SE I 0. 33 0. 84 2. 39 1. 77 1. 35 2. 42 1. 74 3. 75 3. 28 1. 11 1. 90

Span 0. 28 0. 78 2. 09 1. 61 1. 17 2. 00 1. 49 3. 13 2. 80 0. 84 1. 62

`a 0. 61 0. 64 2. 06 1. 05 1. 80 1. 87 0. 68 3. 63 1. 80 0. 65 1. 48

λ 2 0. 13 1. 07 1. 58 1. 81 1. 17 1. 56 1. 78 1. 66 2. 02 0. 72 1. 35

H 0. 26 0. 60 1. 47 1. 27 0. 44 2. 15 1. 93 2. 62 2. 42 0. 28 1. 34

λ 3 0. 24 1. 42 1. 55 1. 57 1. 04 1. 54 1. 50 1. 60 1. 72 1. 04 1. 32

SE P 0. 24 0. 56 1. 51 1. 26 0. 38 2. 11 1. 83 2. 42 2. 16 0. 39 1. 29

α 1 0. 65 0. 47 2. 07 0. 82 1. 75 1. 82 0. 50 2. 87 1. 18 0. 71 1. 29

λ 1 0. 17 0. 64 1. 52 1. 24 1. 05 1. 49 1. 21 1. 81 2. 17 0. 93 1. 22

P V_FREEMAN 0. 16 1. 24 1. 42 1. 32 1. 05 1. 44 1. 36 1. 49 1. 58 1. 01 1. 21

p1 0. 29 0. 58 1. 27 1. 13 0. 45 1. 93 1. 77 2. 30 2. 14 0. 14 1. 20

Ø Shannon entropy has the highest ice type discrimination ability.

Ø Good discrimination ability among sea ice types.

Ø Poor discrimination in OW-Gi separation and Gw-GwW separation.

SE: ED=2.75

Clear differences 
between sea ice 

types

RVI: ED=1.10

OW and Gi are 
easily confused



nS-band

OW-Gi OW-GiW OW-Gw OW-GwW Gi-GiW Gi-Gw Gi-GwW GiW-Gw GiW-GwW Gw-GwW Ice Type
1. 80 2. 49 3. 25 4. 27 0. 94 1. 96 3. 24 1. 07 2. 12 0. 79 2. 19

1. 38 2. 29 2. 96 4. 00 1. 22 2. 07 3. 48 0. 81 1. 92 0. 99 2. 11

1. 67 2. 35 2. 98 3. 95 0. 84 1. 69 2. 77 0. 92 1. 85 0. 69 1. 97

1. 49 2. 19 1. 95 2. 95 1. 03 1. 49 2. 48 1. 01 1. 96 0. 72 1. 73

1. 77 2. 18 1. 83 2. 63 0. 72 1. 34 2. 12 1. 05 1. 79 0. 52 1. 59

1. 22 1. 81 1. 96 2. 72 0. 89 1. 48 2. 30 0. 93 1. 79 0. 80 1. 59

1. 78 2. 21 1. 82 2. 63 0. 67 1. 33 2. 09 1. 06 1. 79 0. 50 1. 59

1. 18 1. 67 1. 73 2. 43 0. 68 1. 38 2. 04 1. 08 1. 71 0. 43 1. 43

0. 21 1. 56 1. 32 2. 51 1. 53 1. 27 2. 50 0. 18 1. 38 1. 07 1. 35

Ø Intensity component of shannon entropy has the highest ice type 

discrimination ability.

Ø Good discrimination ability between OW and sea ice.

Ø Poor discrimination in GiW-Gw separation and Gw-GwW separation.

SEI: ED=2.19

Except for Gw-
GwW, other sea 
ice types vary 
significantly

β: ED=0.83

OW and GI
perform similarly



nC-band

OW-Gi OW-GiW OW-Gw OW-GwW Gi-GiW Gi-Gw Gi-GwW GiW-Gw GiW-GwW Gw-GwW Ice Type
3. 96 4. 39 4. 46 6. 67 0. 42 0. 86 3. 18 0. 52 2. 88 1. 87 2. 92

4. 14 4. 81 4. 28 6. 90 0. 60 0. 68 3. 00 0. 20 2. 56 1. 73 2. 89

3. 92 4. 54 4. 05 6. 42 0. 55 0. 63 2. 68 0. 18 2. 25 1. 58 2. 68

1. 76 1. 76 1. 73 2. 40 0. 22 0. 95 2. 06 0. 80 1. 99 1. 51 1. 52

1. 69 1. 72 1. 69 2. 37 0. 30 0. 90 2. 01 0. 67 1. 90 1. 47 1. 47

1. 18 0. 19 2. 23 2. 10 1. 24 1. 42 1. 17 2. 41 2. 36 0. 42 1. 47

1. 66 1. 87 1. 23 2. 67 0. 21 0. 62 2. 23 0. 51 2. 15 1. 55 1. 47

1. 59 1. 67 1. 70 2. 17 0. 21 0. 91 1. 85 0. 75 1. 79 1. 38 1. 40

1. 74 2. 28 0. 89 2. 64 0. 63 0. 38 2. 02 0. 12 1. 70 1. 14 1. 35

1. 72 2. 27 0. 86 2. 65 0. 65 0. 38 2. 04 0. 11 1. 70 1. 12 1. 35

0. 84 0. 00 2. 30 1. 51 0. 92 1. 70 1. 00 2. 40 1. 56 0. 44 1. 27

1. 49 1. 58 1. 39 1. 83 0. 25 0. 75 1. 56 0. 60 1. 49 1. 14 1. 21

Ø Shannon entropy has the highest ice type discrimination ability.

Ø Good discrimination ability between OW and sea ice.

Ø Poor discrimination in Gi-GiW separation and Gi-Gw separation.

SE: ED=2.92

Clear contrast 
between OW 
and sea ice 

PF: ED=0.55

Almost 
indistinguishable 
between sea ice 

types.



nSea ice classification based on multi-band and multi-polarization features

Ø Extracting polarization features using 

multiple polarization decomposition 

methods

Ø Constructing a feature set based on 

separability index.

Ø Combining recursive feature elimination 

with various classifiers to discuss and 

obtain the optimal feature set.



Proposed method PCNN

OW Gi Giw Gw GwW

OW 5255513 9649 10555 1045 10

Gi 28226 871390 103412 38002 21304
Giw 412 75157 1074227 7 81564
Gw 15815 76717 29 746596 34223

GwW 94 11792 1921 128629 414341

Uers acc 99.60% 82.03% 87.24% 85.55% 74.42%

Overall acc/Kappa 92.91%/0.8837

OW Gi Giw Gw GwW

OW 5250176 6199 7009 2526 10

Gi 31086 956218 78045 30439 27974
Giw 15138 37394 1104166 0 43807
Gw 2982 38471 0 787046 4309

GwW 48 6423 924 94268 475342

Uers acc 99.70 85.09 91.98 94.51 82.38

Overall acc/Kappa 95.26%/0.9222



nOperational sea ice mapping combining C- and L-band SAR imagery

Ø European ice services, Canadian ice service, and International Ice Patrol judged the 

gain of using L-band SAR images in addition to C-band data (ESA-funded project 

supported by JAXA and the International Ice Charting Working Group)

Ø Automatic classification of combined C- and L-band data were tested.

Ø Alignment of L- and C-band images acquired at different times was investigated.

Ø Gain of using L-band in addition:
+ earlier detection of fractures and of fast ice breakup 
+ easier first-year / multi-year ice discrimination during the melt season
+ better discrimination of thin and thick ice 
+ L-band is less sensitive to wind and sea state (=> iceberg detection)
+ Icebergs inside sea ice are easier to detect



2. Sea ice surface and bottom morphology observation with SAR data
nObjective

Ø Does a correlation exist between sea ice surface deformation and bottom morphology?

Ø Is it possible to use SAR to invert sea ice surface deformation? 

Ø Can SAR backscattering be correlated with the bottom morphology of ice?

Answering the above questions is very useful for sea ice thickness retrieval from SAR.



nData

ØTest site: Labrador coast

ØTime: 19–20 March 2011

Ø In situ: Airborne HEM data

ØSAR: RADARSAT-2 Quad-Pol data
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RADARSAT-2 PolSAR data were acquired nearly coincident with the airborne 
survey flights, with a maximum time difference of 4 hours.



nAirborne HEM data can provide sea ice surface and bottom morphology 

HEM Data Accuracy

Laser altimeter Height of the snow surface ±1.5 cm

±1.5 cm

Ground-penetrating radar Snow depth ±5cm

Ø Ice-plus-snow thickness = EM - Laser

ØSea-ice thickness = EM - Laser – GPR

ØSurface Morphology extracting from Laser

ØBottom Morphology extracting from EM



nThe parameters of surface and bottom morphology 

①Root-mean-square height (sh)

②Height skewness (hsk)

③Height kurtosis (hku)

④Average slope (S)

⑤Root-mean-square slope (sr)

⑥ Slope skewness (Rsk)

⑦ Slope kurtosis (Rku)
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Seven parameters are employed to describe both surface and bottom deformation



nCorrelation analysis between PolSAR feature and ice surface roughness
Ø Only Root-mean-square height has a strong correlation with polarization features.

Ø 9 polarization features have correlations with sea ice surface Root-mean-square height

exceeding 0.6.

Ø The HV to HH ratio has the highest correlation coefficient (R=0.688).

Root-mean-square height of sea ice surface/mRoot-mean-square height of sea ice surface/m



nCorrelation analysis between sea ice surface roughness and bottom roughness 

ØThe first-order roughness parameters have the strongest correlation 

between ice surface and bottom roughness.

ØThe correlation between sea ice surface and bottom roughness weakens

for higher-order roughness parameters.

Root-mean-square slope of sea ice surface

R
oo

t-m
ea

n-
sq

ua
re

 s
lo

pe
 o

f s
ea

 ic
e 

bo
tto

m Density/%
Density/%

Height skewness of sea ice surface
H

ei
gh

t s
ke

w
ne

ss
 o

f s
ea

 ic
e 

bo
tto

m



nCorrelation analysis between sea ice surface roughness and ice thickness

ØThe highest correlation between sea ice surface roughness and thickness 

is found at the average slope.

ØThere is no correlation between height kurtosis and sea ice thickness.
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nCorrelation analysis between sea ice bottom roughness and ice thickness
Ø In comparison to the sea ice surface roughness, the bottom roughness values are larger and 

rougher.
Ø Similar with ice surface, the average slope has the highest correlation coefficient between 

sea ice bottom roughness and ice thickness.
Ø The slope skewness is the lowest.
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nCorrelation analysis between sea ice bottom roughness and ice thickness

HV/HH (cross-pol ratio)

Sea ice surface roughness

Sea ice thickness
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3. Sea ice drift extraction with FY-3D microwave radiometer data

nObjective
Ø Developing a sea ice drift extraction method suitable for the FY-3D microwave radiometer. 

Ø Evaluation with IABP buoy data, and the consistency between SSMIS, and AMSR2 sea-ice 

drift products.

Ø Analysis effects of different time intervals, frequencies, and SICs on the accuracy of ice drift.

nData

Ø FY-3D Microwave radiation imager

Ø DMSP SSMIS

Ø GCOM-W1 AMSR2

nAuxiliary data

Ø NSIDC sea ice concentration: used for 

quality control 

Ø IABP buoy: used to validation results



nMethodology
A CMCC-based approach is used to generate sea ice drift products from gridded vertically and 

horizontally polarized Tb data from FY-3, HY-2, SSMIS, and AMSR2 radiometers.

HY-2 FY-3 SSMISAMSR2

Daily data 
consolidation

Projection 
conversion

Extract Arctic 
brightness 

temperature
GriddingResampling

Format 
conversion

Data

Gridded 
brightness 

temperature data

Sea ice drift 
detection

Continuous 
maximum cross 

correlation 
matching

Quality 
control

Polarization 
fusion

Ice drift 
products

Gauss 
Laplace 

filter

Making a 
mask

Sea ice 
concentration

① Daily Tb data were merged, and the 37 GHz

and 89 GHz data were gridded into 25 × 25

km and 12.5 × 12.5 km grid.

② Laplacian filtering was applied to reduce data

noise, and exclude areas with SIC<15%.

③ CMCC with an 11 × 11 pixel slide window

was used to retrieve sea ice drift.

④ A fusion method was used to average the H-

and V- polarized sea ice drift vector results.



nEffect of time interval on the accuracy of sea ice drift retrieval
Validation and comparison with IABP buoy data

Satellite FY-3D SSMIS AMSR2

RMSE Speed
(cm/s)

Direction
(degree)

Speed
(cm/s)

Direction
(degree)

Speed
(cm/s)

Direction
(degree)

3 d 1.34 7.98 0.92 6.83 0.73 6.49
6 d 0.77 6.49 0.52 5.56 0.51 5.36

14 d 0.45 6.03 0.33 4.45 0.32 4.48

Satellite FY-3D SSMIS AMSR2

RE (%) Speed Direction Speed Direction Speed Direction

3 d 7.21 7.80 4.00 10.83 3.70 5.30
6 d 4.38 9.23 2.37 8.50 2.42 8.32
14 d 3.05 9.70 2.28 9.14 2.22 7.27

Ø Longer time intervals are associated with higher accuracy. 

Ø However, considering the effect of the spatial and temporal 

resolution, an interval of 6 days is a good compromise.



nComparison of product accuracy at different frequency
Validation and comparison with IABP buoy data, the time interval is 6 d. 

Satellite FY-3D SSMIS AMSR2

RMSE Speed (cm/s) Direction (degree) Speed (cm/s) Direction (degree) Speed (cm/s) Direction (degree)

37 GHz (January to February) 0.75 6.68 0.59 6.29 0.49 5.88

37 GHz (March to April) 0.77 6.42 0.51 5.56 0.51 5.36

89 GHz (January to February) 0.58 5.99 0.51 6.92 0.50 6.03

89 GHz (March to April) 0.70 7.13 0.49 5.85 0.53 6.14

Ø For FY-3, the accuracy was higher at 89 GHz than at 37 GHz. 

Ø For SSMIS and AMSR2, the accuracy was slightly lower at 89 GHz.

Ø The low accuracy of the 37 GHz FY-3 product was probably related to outliers in the Tb data 

between orbits.



n Intercomparison and consistency analysis of satellite-derived sea ice drift

p 37 GHz :
R (0.77~0.89)
RMSE
(1.19~1.99 cm/s)

p 89 GHz :
R (0.68~0.81)
RMSE
(1.67~2.13 cm/s)



nThe effect of sea ice concentration on sea ice drift
Ø There is a negative correlation between ice speed 

differences and sea ice concentration. 

Ø Speed differences are notably high for all products at 

concentrations of 80–90%, but they decrease at 

concentrations exceeding 90%.

Ø The smallest differences in drift speeds are observed 

between those retrieved from SSMIS and AMSR2.

Ø For concentrations below 70%, differences between drift 

speeds retrieved from FY-3 and those from AMSR2 remain 

small, but they become relatively large at concentrations of 

70–90%.



FY-3D ice drift speed SSMIS ice drift speed AMSR2 ice drift speed

Ø Our results showed that the four microwave radiometers provided relatively consistent 

measurements of sea ice drift. 

Ø The largest differences were concentrated at the ice edge and between eastern Iceland and 

western Russia.



4. Snow depth retrieval over sea ice using microwave radiometer data
nObjective

Ø Snow over sea ice controls energy budgets and affects sea ice growth and melting. 

Ø Passive microwave radiometers can be used for basin-scale snow depth estimation at a 

daily scale.

Ø The Antarctic sea ice surface is covered by a thick layer of snow, and high-frequency signals 

of radiometer  cannot completely penetrate the snow-load. 

Ø The existing algorithm tends to underestimate the snow depth by approximately half of its 

actual value.

A new snow depth retrieval model was developed using low-frequency Tbs.



nData

Ø AMSR-E (2002-2011)

Ø AMSR2 (2011-2012 )
AMSR-E AMSR2

nAuxiliary data

Ø Airborne OIB snow depth data

Ø ASPeCt shipboard observation data

Ø AADC in situ data

Spatial and temporal distribution 
of OIB data

Spatial and temporal distribution of 
AADC and ASPeCt data



nMethodology

Ø The vertical polarization GR at 19 and 37 GHz 

are commonly used to estimate of snow depth.

Ø 19 and 37 GHz, high-frequency, hardly penetrate 

snow load. 

Ø 7 GHz, low-frequency, can penetrate snow cover 

at greater depth.

GR(37/7)SD (cm) 26.7 - 411 (37 / 7)GR= ×



Year Intercept Slope Number of grid number
2009 25.4 -417 161
2010 27.2 -445 88
2012 28.3 -349 147
2013 23.8 -707 40
2014 25.4 -394 103
2016 27.3 -474 134
2017 33.8 -176 68

Apply all data 26.7 -411 740

The regression coefficients of snow depth estimation 
equations based on OIB snow depth data in different years

MD (cm) MAD (cm) RMSE (cm)
Correlation 

coefficient
Proposed -1.55 6.84 9.23 0.62
Comiso -19.15 19.15 21.26 0.60

The comparisons between the OIB snow depth and the
snow depth estimates from our method and the Comiso method

nSelf-evaluation of the proposed method

Ø No obvious interannual variations could 

be found for either the slope or the 

intercept values.

Ø The proposed method has a good result 

by compared with OIB snow depth.



nComparison to AADC and ASPeCt data

Comparison to AADC data Comparison to ASPeCt data
Proposed method Comiso method Proposed method Comiso method

MD (cm) 5.64 -14.47 8.62 (8.94) -9.96 (-10.16)
MAD (cm) 10.77 17.08 13.80 (13.91) 13.11 (13.20)
RMSD (cm) 13.79 19.49 16.85 (16.85) 17.61 (17.61)

Correlation coefficient 0.42 0.40 0.13 (0.13) 0.19 (0.19)
Number of grid cells 15 15 264 (257) 273 (257)

Snow depth differences:
Proposed method- ASPeCt

Snow depth differences:
Comiso method- ASPeCt

Proposed method was better during spring, summer and autumn



nThe uncertainty from estimation methods

1 2 1 2

2 2 2 2 2 2 2 2 2 2
1 2 3 4 5=

v vGR Tb Tb k k cG G G G Gs s s s s s+ + + +

2 2 2 2 2 2
SD

SD SD= ( ) ( ) +( )a b GRb
a b

s s s s¶ ¶
+

¶ ¶

Considering the sources of uncertainty: brightness 

temperatures, model coefficients, et al. 

Ø The uncertainty of proposed method: 0~50 cm

Ø The uncertainty is large in the marginal zone and 

small in the interior; while is large in summer and 

small in winter.



nData access

Antarctic Sea Ice Surface Snow Thickness Dataset (2002-2020), published in the National 

Tibetan Plateau Science Data Center     https://doi.org/10.11888/Snow.tpdc.271653

Shen, X., Ke, C.-Q., et al. (2022). A new digital 

elevation model (DEM) dataset of the entire 

Antarctic continent derived from ICESat-2, 

Earth Syst. Sci. Data, 14, 3075–3089,  

https://doi.org/10.5194/essd-14-3075-2022.

https://doi.org/10.11888/Snow.tpdc.271653


5. Analysis of decadal changes of sea ice in the Bohai Sea with GOCI data
nObjective

ØThe region surrounding the Bohai Sea is

a important strategic economical circle.

ØSea ice seriously impacts ports, shipping,

fishers, and marine operations around the

Bohai Sea.

ØSea ice monitoring is an important task.

A long-term analysis helps us understand sea ice changes and climate change.



nGOCI Data

ØSatellite：Communication Ocean and

Meteorological Satellite, Korea

ØLaunch: June 2010, Korea

ØOrbit: Geostationary Orbit

ØSpatial resolution: 500 m

Ø Imaging Time: 00:15 (UTC) ~07:45

(UTC), 8 images a daytime

ØBand: 8 bands (6 visible, 2 NIR)
GOCI data can provide hourly sea ice 
observations with 500 m resolution.

680 nm
555 nm
443 nm



nSea ice parameters extraction

Sea ice concentration

𝑠𝑒𝑎𝑖𝑐𝑒!"# =
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MCC method



nDecadal changes of sea ice area 

Annual average sea ice area

-357.4 km2/year
Annual maximum sea ice area

-1214.1 km2/year



nDecadal changes of sea ice thickness 

Annual average sea ice thickness

-0.30 cm/year
Annual maximum sea ice thickness

-0.56 cm/year



nDecadal changes of sea ice drift 

The interannual characteristics is not obvious.

The frequency of sea ice drift direction

Ø SW, largest proportion;

Ø NE, small proportion;

Ø NW and SE: little proportion;

13.62% 10.72%

3.48%



nSea ice prediction models based on decadal statistics

ØCumulative negative temperature is key to predict the change of sea ice.

ØWe analyze the correlation between cumulative negative air temperature-

Days with ice area and ice thickness.

Sea ice area: 
highest correlation (0.7403) 
at 19 days

Sea ice thickness: 
highest correlation (0.5251) 
at 40 days



nSea ice area prediction model

-28.19 51.35 305.93AT windS t v= - + 91.99 90.82 773.49AT windS t v= - - +
0.4484.07 10 45 1685.1ATt

windS e v--= ´ ´ - +

Growth period Melting period All periodsDevelopment period
107.65 251.71 393.92AT windS t v= - + -

Growth period

Development period

Melting period



nSea ice thick prediction model

0.017 0.29 0.56AT windH t v= - - + 0.041 0.1 8.38AT windH t v= - - + 0.048 0.26 0.76AT windH t v= - - +

Growth period Melting period All periodsDevelopment period

Growth period

Development period

Melting period



nSea ice drift prediction model (Neglecting the influence of internal ice stresses)

ice wind curv av bv= +
  

a — drag coefficients of wind

b — drag coefficients of current

1 2 1 2

3 4 3 4

x x x

y y y

ice wind cur

ice wind cur

v v va a b b
v v va a b b
é ù é ù é ùé ù é ù

= +ê ú ê ú ê úê ú ê ú
ë û ë ûê ú ê ú ê úë û ë û ë û

0.0196 0.0555
0.0144 0.0089

1.1380 4.9278
0.6052 2.2060

a

b

-é ù
= ê ú- -ë û
-é ù

= ê ú
ë û

Ø The model is simple and needs to be improved

Ø Wind and current data are from ECMWF ERA5

Reasons for error:

𝑣!"#! 𝑣!"#"



EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures 
(since July 2020) for no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low 
bit rate by ftp, insert “ftp” 

ESA Third Party Missions No. 
Scenes

1. ALOS PALSAR 6

2. RadarSAT-2 16

3. Cosmo-SkyMed 6

4.

5.

6.

Total:

Issues:
Iceberg detection, University in 
Tromsø/Norway: ESA-Agreement with JAXA: 
PALSAR-2 FB and WB images since April 2019 
(not specifically via Dragon)

ESA Third Party Missions No. 
Scenes

1. Sentinel-1 45

2. Sentinel-3 SLAT 2017~2023

3. CryoSat-2 2017~2023

4.

5.

6.

Total:

Issues:
Iceberg detection, University in Tromsø/Norway: 
S1 and S2 images via Science Hub since April 
2019 (not specifically via Dragon)

Chinese EO data No. 
Scenes

1. HY-2B 2018~2023

2. GF-3 45

3. FY-3C 2019~2023

4.

5.

6.

Total:

Issues:



III. Cooperation
Ø FIO, AWI, FMI, and NSOAS continue to develop sea ice thickness retrieval algorithms.

Ø NSOAS, FMI and DMI develop sea ice concentration estimation and SIC noise 

reduction algorithms.

Ø Joint effort by AWI/UiT, FIO, FMI, and SCMU is in preparation to deal with the 

detection of icebergs in sea ice. 

Ø Cooperations with ice services world-wide (e.g. Denmark, Norway, Sweden, Canada, 

US, Argentina), plus Chalmers Technical University in Gothenburg, Sweden.

Ø The work of sea ice thickness detection work was selected for China-EU Space 

Science and Technology Cooperation Briefing.



International Glaciological Society



Name Institution Poster title Contribution

Laust Færch
UiT The Arctic University 
of Norway

Variations of Signature Contrast Between Icebergs and Sea 
Ice Dependent on Ice Conditions and Radar Parameters

Iceberg

Xiao-yi Shen Nanjing University
An Observation of Arctic Melt Ponds Based on Sentinel-2 
and ICESat-2

Melt ponds

Wen-shuo Zhu
Shandong University of 
Science and Technology

Comparison of Doppler-Derived Sea Ice Radial Surface 
Velocity Measurement Methods from Sentinel-1A IW data

Sea ice drift

Jun-hui Zhu
Shandong University of 
Science and Technology

Enhanced-resolution reconstruction for the China-France 
Oceanography Satellite scatterometer

Sea ice drift

Ran Yan Qingdao University
Sea Ice Parameter Retrieval In The Bohai Sea Using GOCI 
Data From 2011-2020

Ice concentration,
thickness, drift

Wen-long Bi Qingdao University
Inversion Of Sea Ice Concentration And Thickness In The 
Yellow Sea And Bohai Sea Based On HY-1C Data

Ice concentration,
thickness

IV. Young scientists and Publications



①Sun X, Zhang Xi, Huang W, et al. Sea Ice Classification Using Mutually Guided Contexts. IEEE 
Transactions on Geoscience and Remote Sensing, 2023.

②Dierking W., Zhang X., and co-authors, “Using New Ocean Remote Sensing Data for Operational 
Applications: Results from the Dragon 4 Cooperation Project”, Remote Sensing, 2021, 13, 2847.

③Dierking W. et al., “Synergistic used of L- and C-band SAR satellites for sea ice monitoring”, 
IGARSS 2021.

④Zhang X. et al., “Arctic Sea Ice Classification Based on HY-2B Dual-band Radar Altimeter Data 
during Winter to Early Spring Conditions”, IEEE JSTARS, 2021, 14: 9855-9872.

⑤Shi L., et al., Sea Ice Concentration Products over Polar Regions with Chinese FY3C/MWRI Data. 
Remote Sens. 2021, 13, 2174.

⑥Dong Z, Shi L, Lin M, et al. Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B 
Ku-band radar altimeter. The Cryosphere, 2023, 17(3): 1389-1410.

⑦Dong Z. et al., A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its 
Application to Sea Ice Thicknesses of Cryosat-2 Data. Remote Sensing, 2022, 14, 1041.

⑧Wu S, Shi L, Zou B, et al. Daily Sea Ice Concentration Product over Polar Regions Based on 
Brightness Temperature Data from the HY-2B SMR Sensor. Remote Sensing, 2023, 15(6): 1692.



⑨ Liu M., et al. “Arctic Sea Ice Classification Based on CFOSAT SWIM Data at Multiple Small 
Incidence Angles.” Remote Sensing, 2021, 14, 91.

⑩ Liu M., et al. “Sea ice recognition for CFOSAT SWIM at multiple small incidence angles in the 
Arctic.” Front. Mar. Sci., 2022, 9: 986228.

⑪Fang H., Zhang X., et al. Evaluation of Arctic Sea Ice Drift Products based on FY-3, HY-2, AMSR2 
and SSMIS Radiometer Data. Remote Sensing. 2022, 14(20), 5161.

⑫Wang R, Zhu J, Zhang X, et al. Enhanced-resolution reconstruction for the China-France 
Oceanography Satellite scatterometer. Geocarto International, 2023, 38(1): 2189315.

⑬Wang R, Zhu W, Zhang X, et al. Comparison of Doppler-Derived Sea Ice Radial Surface Velocity 
Measurement Methods From Sentinel-1A IW Data. IEEE JSTARS, 2023, 16: 2178-2191.

⑭Xiaoyi Shen et al. Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource 
passive microwave radiometers. Earth System Science Data, 2022, 14(2): 619-636.

⑮Xiaoyi Shen et al. Assessment of Arctic sea ice thickness estimates from ICESat-2 using IceBird
airborne measurements. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 
3764-3775. 

⑯Xiaoyi Shen et al. Thinner Sea Ice Contribution to the Remarkable Polynya Formation North of 
Greenland in August 2018. Advances in Atmospheric Sciences, 2021, 38(9): 1474-1485.



V. Next planning
Ø Iceberg detection: improvement of algorithms, comparison and selection 

of optimal one(s), collection of data for validation, validation, building 

semi-operational environment (the key work of Sino-European joint effort).

ØSea ice drift: develop algorithm for Chinese HY-2 radiometer and for 

alignment of C- and L-band images (at AWI and University in Tromsø)

ØSea ice thickness: Altimeter + SAR to improve the spatial resolution of 

sea ice thickness product.



Thank you !


