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Context

In recent years, newly launched satellites have achieved multi-satellite networking, 
meter-level spatial resolution, and a global revisit cycle of 2-5 days

Better than meters spatial resolution, 2-5 days 
short revisit

CEOS, ESA , NASA, NRSCC pay more 
attention on remote sensing applications
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Context
Remote sensing due to its high spatial resolution (meters), high temporal (2-5 Days revisit), hyperspectral 

(hundreds bands) advantages in vegetation is suitable for monitoring, forecasting, and assessing crop growth, 

diseases, pests, and yield

Plant distribution & phenology Environmental factors
Temperature

Phenology

Plant distribution 

Precipitation

EO data for vegetation monitoring 
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Project’s framework and objectives

• Respond to the need to update and optimize the crop biophysical variable retrieval for 
agricultural soil and crops using current and present generation EO data considering errors 
and uncertainties in the remote sensing observations

• Exploit different data processing/assimilation approaches that address the issues of the multi-
scale and multivariate nature of the retrieved variables

i) retrieval of crop related bio-physical variables by using RTM, hybrid and empirical models to 
simulate the interaction of light with vegetation at leaf and canopy levels; 

ii) retrieval of agricultural topsoil properties (texture and soil constituencies), using multivariate 
techniques including machine learning approaches;

iii) optimization of data assimilation procedures of the multivariate and multi-scale remotely sensed 
variables into agricultural models for yield, quality and biotic & abiotic disease estimation;

iv) development of innovative methods for crop pests and diseases monitoring at the regional scale, with 
two typical diseases and pests in winter wheat, e.g. stripe rust and powdery mildew, as examples;

v) evaluation of parameters potentially predisposing the onset of pests and diseases;
vi) exploitation of the DIAS systems.
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EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for 
no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert “ftp” 

ESA /Copernicus Missions No. 
Scenes

1.Sentinel-1 20

2.Sentinel-2 300

Total: 320

Issues: China and EU sites

ESA Third Party Missions No. 
Scenes

1.Landsat-8 25

2.MODIS 30

3.Planet 20

4. PRISMA 50

5. ENMAP 3

Total: 128

Issues: both China and EU

Chinese EO data No. 
Scenes

1.GF-1 50

2.GF-2 55

3.GF-6 60

4.ZY-3 20

5.FY 50

Total: 235

Issues: mostly on China and worldwide
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Training of Young Scientists

Name Institution Poster title Level

Zhenhai Li
Shandong University of Science 
and Technology

Reflections and Applications of Hierarchical 
Modeling in Agricultural Remote Sensing Young scientists

Jing Guo

Aerospace Information Research 
Institute，Chinese Academy of 
Science

Spatiotemporal Distribution And Main Influence 
Factors Of Grasshopper Potential Habitat In Two 
Types Of Steppes In Inner Mongolia, China Doctor

Hao Yang Beijing Academy of Agriculture and Forestry Sciences Young scientists

Linyi Liu Aerospace Information Research Institute，Chinese Academy of Science Young scientists

Yu Zhao Beijing Academy of Agriculture and Forestry Sciences Young scientists

Dong Han Beijing Academy of Agriculture and Forestry Sciences Young scientists

Lei Lei Beijing Academy of Agriculture and Forestry Sciences Doctor

Ruiqi Sun Aerospace Information Research Institute，Chinese Academy of Science Master7



European Young scientists contributions in Dragon 5

Name Institution Poster title Contribution including period of 
research

Francesco Rossi University of Rome 
“La Sapienza” 
Participated by 
CNR IMAA

A Study On The Effects Of 
Viewing Angle And Solar 
Geometry Variation In Crop 
EO Observation.

Data pre-processing including BRDF
model. Crop biophysical vegetation 
parameter and soil (texture and 
constituencies) retrieval parameter via
MLR and hybrid methods

Simone Saquella University of Rome 
“La Sapienza” 

Not funded by Dragon 5 Crop mapping, monitoring and algorithm 
development for pests and diseases 
detection.

Saham Mirzaei CNR IMAA Not funded by Dragon 5 Classification hyperspectral data for crop 
mapping, spectral indices for biophysical 
crop parameter retrieval (pigments, 
proteins)
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EO Agricultural Products & Application Services

Part 1
Soil Property Retrieval 

Based on Remote Sensing Technology

Part 2
Crop Biophisical Retrieval 

Based on Remote Sensing Technology

Part 3
Crop Pest Remote Sensing Monitoring and 

Forecasting

Part 4
Crop Yield Estimation 

Based on Remote Sensing Technology

Provide Soil 
Information 

(Fertility Map)

Provide Soil 
Information 

(Fertility Map)

Provide the 
Primary Factors

Models Key Input 
Factors

Models Key Input 
Factors

Setting of Project Research Content
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Research Progress

1. Crop monitoring

§ Topsoil Characterization 

§ Crop Biophysical Parameters Retrieval

§ Crop Yield Estimation

2. Pest and diseases Monitoring and Forecasting

§ Pest (Locust and Grasshopper)

§ Diseases (Yellow Rust)

3. Products and Application
10



Topsoil Characterization

Quzhou County in the northeast of China. Red Polygons (50) of the study fields. 
(a) Fields in the South-West corner of the study area
(b) fields in the North-East corner.  
Data source Sentinel-2 19-OCT-2020 RGB image.

Survey content
PH

Total Nitrogen (%)
Organic Matter (%)

Soil Organic Matter (g/kg)
Soil Nitrogen Content (g/kg)
Effective Phosphorus (g/kg)
Available Potassium (mg/kg)

a)                                       b)

With the launch of the next generation of hyperspectral satellite sensors in the next years, a high potential 
to meet the demand for global soil mapping (soil fertility map) and monitoring is appearing. 
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Survey content
PH

Total Nitrogen (%)
Organic Matter (%)

Soil Organic Matter (g/kg)
Soil Nitrogen Content (g/kg)
Effective Phosphorus (g/kg)
Available Potassium (mg/kg)

The topsoil properties were investigated using a five-point sampling method, and for each sampling area the
specific sampling locations are shown below.

• First remove any plants, stones, etc. from the surface of the soil and dig out small pits using tools.
• Take an appropriate amount of top soil along the cut surface from the bottom upwards, to a depth of

approximately 20cm
• The soil obtained from the five points was mixed well, placed in plastic bags and sent to the laboratory for testing

20m

20
m

2019 2020
OM
(%)

TN 
(g/kg)

AP
(mg/kg)

AK
(mg/kg)

pH
(-)

OM
(%)

TN 
(g/kg)

AP
(mg/kg)

AK
(mg/kg)

pH
(-)

Min 1.18 0.71 4.87 85.00 7.71 1.12 0.86 5.43 62.00 7.54
Max 2.46 1.44 36.33 318.00 8.17 2.75 1.56 74.20 243.00 8.17
Mean 1.81 1.03 15.68 138.40 7.91 1.86 1.16 18.66 121.53 7.96
Std 0.23 0.14 7.74 46.64 0.10 0.43 0.20 12.12 46.91 0.12

Topsoil Characterization
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Bare Soil spectra recognition Data spectral pre-treatment

Topsoil Characterization Data Flow

A B
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Data Flow MLR algorithms tested

Group Machine Learning Retrieval Algorithm

Linear Models

Least Squares Linear Regression
Partial Least Squares Regression
Regularized Least-Squares Regression
Principal Components Regression
Elastic Net Regression

Splines and Polynomials Adaptive Regression Splines

Tree Models

Bagging trees
Random Forest
Canonical Correlation Forests

Kernel Methods
Support Vector Regression
Kernel Ridge Regression

Gaussian Processes Gaussian Processes Regression

Many methods for applying data-mining approach to soil spectral information have been used and developed,
from multiple linear regression (MLR) analysis (of the spectra against the chemical/physical data) through
principal component analysis regression, partial least squares regression (PLSR), artificial neural networks (ANN)
and random forest among others.
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Data Flow bare soil pixel selection
Explore the synergic use of the constrained Linear Mixing Model (LMM) to separate bare soil and green 
vegetation (PV) and NPV by the cellulose BD @ 2100nm.

𝑅!"! = 𝑓#$%𝑅#$% + 𝑓&'()𝑅&'()

𝑅&'() =
𝑅!"! − (1 − 𝑓&'()) ) 𝑅#$%

𝑓&'()
The threshold value for  𝑓&'() of 85% was selected to do not: 
(a) exclude an excessive number of pixels 
(b) take pixels with a high unmixing RMSE
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Data Flow bare soil pixel selection
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Data Flow MLR algorithms tested

PRISMA Preprocessing MLRA
R2

Training
RMSE Test

(%)
R2 Test RPD RPIQ

SOC MF Support Vector Regression 0.24 0.24 0.39 1.26 1.74
TN SG2_Abs Support Vector Regression 0.30 0.13 0.58 1.56 1.57
AP snv_SG2_abs Random Forest 0.59 4.70 0.60 1.58 2.26
AK snv_SG1_abs Random Forest 0.85 24.59 0.59 1.37 1.66
PH Untreated Regularized least-squares regression 0.65 0.07 0.25 1.34 1.82

S-2 Preprocessing MLRA
R2

Training
RMSE Test

(%)
R2 Test RPD RPIQ

SOC S2_Absor Canonical Correlation Forests 0.92 0.29 0.25 1.18 0.75
TN S2_Absor Random Forest (TreeBagger) 0.71 0.16 0.44 1.34 1.18
AP S2_Refl Support Vector Regression 0.02 11.34 0.30 1.03 1.53
AK S2_Absor Partial least squares regression 0.59 42.60 0.46 1.33 1.81
PH S2_Refl Kernel ridge Regression 0.55 0.11 0.23 1.13 1.45

0

0,5

1

1,5

2

2,5

SOC TN AP AK PH

RP
IQ

PRISMA S-2
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Organic 
MatterSoil constituents’ prediction maps 

obtained applying the best performing 
MLRA and preprocessing on the 
PRISMA image of 05-November-2022.

Total Nitrogen

Available Potassium

Ph

Effective
Phosphorous

For each subplot on the left are the fields 
in the South-West corner of the study 
area and on the right the fields in the 
North-East corner. Black pixels belong 
to pixels covered by vegetation and 
dominant in NPV residues.

Soil fertility map

The predictions by using PRISMA are 
better than those obtained by S-2 both 
in terms of RMSE and RPD. 

The predicted accuracy for nutrients 
retrieval in terms of RMSE (24.59 mgkg-1

for P; 4.70 mgkg-1 for K) is comparable to 
the one given by Song et al. 2018 and Yu et 
al. 2018 on different Chinese test sites 
using lab spectra 19



Research Progress

1. Crop monitoring

§ Topsoil Characterization 

§ Crop Biophysical Parameters Retrieval

§ Crop Yield Prediction

2. Pest and diseases

§ Pest (Locust and Grasshopper Forecasting )

§ Diseases (Yellow Rust)

3. Products and Application
20



Measurement protocol and validation metrics for crop vegetation

serie A BBBBBBB A (cioè una misura 
Above + 8 misure Below + 1 misura 
Above). Impostare Menu > Log Setup
> Transcomp > Determine Above > 
Interpolate.

Se c’è il sole, almeno ogni ora effettuare 
una serie di misure separate di 4 A per la 
determinazione di K (scattering 
correction)

Canopy Variables:
• LAI
• FCOVER
• FAPAR

Definition of field measurement and sampling methods.

Field Data Collection Campaigns – biophysical variables

21



Definition of field measurement and sampling methods.

q 12 leaf disks per transect from 
4x3 leaves [60 disks per ESU]

Ø 50% dried for EWT & LMA

Ø 50% frozen –  20°C for Cab 
& Carotenoids lab analysis

Leaf Variables:
• EWT
• LMA
• N%
• C%
• Cab
• Car

Field Data Collection Campaigns - biophysical variables
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Field monitoring campaigns at the Maccarese site (IT): 2022 maize season

22 ESU maize
(3 campaigns +PRISMA images)

Field Data Collection Campaigns - biophysical variables
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BD = 1 – RC

constrained min
(Generalized Reduced Gradient Method)

CW, FWHM

Gaussian fitting of the 900-1100nm spectra

Spectral Algorithm for crop biophysical Retrieval

EWT leaf equivalent water thickness (LEWT) is an important parameter in ecological and environmental 
monitoring. It applies the Beer-Lambert law to inversely determine (constrained minimization) the optical 
thickness d of the water layer responsible for the water absorption feature at 970 nm

24



Spectral Algorithm for crop biophysical Retrieval
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Hybrid methods for biophysical variables  retrieval

FAPAR [-] FCOVER [-]

LAI [m2 m−2] LCC [mg 𝑐𝑚!"]

LAI

LCC

FAPAR

FCOVER

Dimensionality 
reduction

Estimation of 
biophysical 
variables

(trained models)

OPERATIONAL USE

PRISMA 
f(CW ,FWHM)

Generation of 
training dataset 

PROSAIL-PRO
Resampling

Dimensionality 
reduction

Training Machine 
Learning Regression 

Models

Leaf Level 
Parameters

Canopy 
Parameters

Observation 
Geometry

Soil
Parameters

TRAINING PHASE

GPR, Active Learning
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Hybrid methods for biophysical variables  retrieval

RMSE 11.44
RMSE 0.15

RMSE 0.17

LCC FAPAR FCOVER
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PRISMA BIAS RMSE RRMSE MAD R2 Pearson RPD RPIQ
LAI 0.12 m2m−2 0.78 m2 m−2 0.25 0.61 m2 m−2 0.87 0.93 2.23 2.94
LCC 5.59 µg cm−2 11.45 µg cm−2 0.26 8.99 µg cm−2 0.46 0.68 1.21 1.41
FCOVER 0.06 0,15 0.21 0.12 0.71 0.84 1.72 2.01
FAPAR -0.14 0.16 0.29 0.15 0.78 0.88 1.06 1.33

Sentinel-2 BIAS RMSE RRMSE MAD R2 Pearson RPD RPIQ
LAI 0.44 m2m−2 0.99 m2 m−2 0.32 0.78 m2 m−2 0.78 0.88 1.74 2.3
LCC* -5.20 µg cm−2 23.25 µg cm−2 0.53 18.75 µg cm−2 0.15 -0. 39 1.21 1.40
FCOVER 0.10 0.25 0.37 0.17 0.43 0.65 1.68 2.00
FAPAR -0.06 0.23 0.42 0.19 0.46 0.68 1.08 1.35

Hyperspectral vs Multispectral
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High-precision remote sensing inversion products of vegetation leaf area index in key regions around the world

p Take advantage of the high spatial resolution of Sentinel-2 data to improve the spatiotemporal resolution and inversion 
accuracy of leaf area index products

p Establish an inversion model that couples optical and radar data to solve the problem that the inversion accuracy is affected 
by vegetation canopy characteristics (such as plant shape)

Model advantages:
p Compared with the traditional single index method, the LAI inversion algorithm

based on vegetation-sensitive bands can effectively improve the inversion accuracy,
with R2 up to 0.87 and RMSE<0.74.

p Vegetation inversion products based on Sentinel-2 and high-resolution data not
only have higher spatial resolution , but also have more complete spatial continuity.

LAI inversion model combining active and 
passive methods Crops and grasslands in Jiu San 

Reclamation Area of Heilongjiang, Luohe of 
Henan, Shunyi of Beijing and Xilingol were 
selected for verification, and the calculation 
accuracy was

Seriously missing data

RMSE<0.74
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Relationship between 
backscattering coefficient and LAI

Relationship between Integrated 
vegetation index and LAI

direct test results

Re Re Re*2.5*( ) / (1 6* 7.5* )Freeman Nir d Nir d dMEVI RVI R R R R R= - + + -

Comparative analysis with MODIS products

Crop Biophysical Retrieval Based on Optical and Radar RS data

Radar Vegetation Index
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p Proposed a multi-source high-resolution satellite data fusion scheme to improve the data quality and spatial and
temporal resolution of the product ;

p a chlorophyll inversion model for global key areas based on the random forest model (RF) to achieve high-precision
dynamic inversion of chlorophyll content and vegetation growth monitoring
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Technical plan for chlorophyll content 
inversion in key regions around the world Direct test results: R2=0.80, RMSE=7.61 Indirect test results: comparison 

with MODIS
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Cross-validation results: RMSE<10.6

Spatiotemporal trend: The 
inversion results are relatively 
consistent

High-precision remote sensing inversion products of vegetation chlorophyll content in key areas around the world

Crop Biophysical Retrieval Based on MLRA
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p Produced 20- meter resolution time-series high-precision vegetation chlorophyll content remote sensing inversion
products from 2017 to 2021

l The dynamic monitoring product of
vegetation chlorophyll content displays the
growth status of crops and grassland in key
areas at home and abroad.

l High-precision, high-resolution chlorophyll
inversion products better ensure the quality
and competitiveness of the data resources of
the special digital earth platform , and are
helpful for monitoring crop diseases and
insect pests, food yield monitoring , and
vegetation growth monitoring.

Huanghuaihai area Main grain-producing areas in the middle and lower reaches of 
the Yangtze River

Argentinian grain 
producing areas

North-east area Brazil’s main grain producing areas Major food producing areas in the United 
States

• B. Zhang, H. Ye, Lu. W, et al. 
Remote Sensing . 2021, 13, 2083. 
(SCI, Top 25)

• Xiao Yingxin , Dong Yingying, 
Huang Wenjiang, et al. 2021, UK , 
2101354.5. ( Patent )

High-precision remote sensing inversion products of vegetation chlorophyll content in key areas around the world

Crop Biophisical Retrieval Based on MLRA
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Research Progress

1. Crop monitoring

§ Topsoil Characterization 

§ Crop Biophysical Parameters Retrieval

§ Crop Yield Prediction

2. Pest and diseases

§ Pest (Locust and Grasshopper Forecasting )

§ Diseases (Yellow Rust)

3. Products and Application
32



Generating spatial crop yield information is of great significance for academic research and guiding agricultural
policy. Existing public yield datasets have a coarse spatial resolution, spanning from 1 km to 43 km, they cannot
deal with small-scale spatial heterogeneity, which happens to be the most significant characteristic of the Chinese
farmers' economy.

To propose a semi-mechanistic model combining remote sensing observations and
regional meteorological information, which can simultaneously overcome inter-
annual and cross-regional problems.
To generate a high-resolution Chinese winter wheat yield dataset
(ChinaWheatYield30m) for the period 2016-2021.

Ø Constructing yield 
model suitable for 
large area scale

Ø Analyzing the 
spatiotemporal 
scalability of the 
yield model

Ø Generating a high-
resolution Chinese
winter wheat yield
dataset

Objectives

Research content

G

B

Crop Yield Prediction - background
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This study area consists of the main winter
wheat-growing region of China.

The main winter wheat production areas are
mainly distributed in the Huang-Huai-Hai
region (HHH), Southwest China (SW), Gansu-
Xinjiang region (GX), the middle and lower
reaches of the Yangtze River (MLYR), and the
Loess Plateau (LP).

Most of the regions are in the middle of China
and includes temperate-continental monsoon,
temperate monsoon, and subtropical
monsoon climates.

The sown area and production of winter
wheat in China accounted for 20.02% of staple
food crops in 2021 (National Bureau of
Statistics of China, 2021), respectively.

Distribution of winter wheat within the study area and three selected example areas.
Region 1, 2, and 3 is available at http://lbs.tianditu.gov.cn/server/MapService.html and
represent areas with winter wheat coverages below 25%, around 50%, and above 75%,
respectively, serving as representative regions for these respective coverage levels.

Crop Yield Prediction - Study Area
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We generated a 30-m Chinese winter wheat yield dataset (ChinaWheatYield30m)  by 
Hierarchical Linear Modeling (HLM)  for major winter wheat region in China for the period 
2016-2021.

Crop Yield Prediction - Result

35
Zenhai-Li et al. RSE 29-022

HLM modelling RF modelling

HLM cv RF cv



Interannual expansion 
verification

2018(n=273):0.16

2019(n=225):0.17

2020(n=258):0.17

2021(n=203):0.17

Year Year

Year

Year

Year Year

Shanxi Hebei
Shandong

Shaanxi Jiangsu

Henan Anhui

The HLM model demonstrates
reliable results in both regional
and interannual cross-validation,
indicating its good generalizability.

Crop Yield Prediction - Regional expansion verification
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To date, the highest-resolution yield dataset: 
ChinaWheatYield30m

2016 2017

2018 2019

2020 2021

2022

2023

The wheat yield in North China's main province in 2023 has
decreased compared to 2022's average yield, consistent with
actual production. —Ministry of agriculture and rural affairs 

Zhao Y, Han S, Zheng J, et al., ChinaWheatYield30m: A 30-m annual winter wheat yield dataset from 2016 to 2021 in China,
Earth system science data, 2023 (Accepted)

Crop Yield Estimation Based on Remote Sensing Technology
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Third-party validation 
(by Xianzhengda Company and Weichai Lovol Company) (nRMSE < 15%)

NERCITA
First prize

Crop Yield Estimation Based on Remote Sensing Technology
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Research Progress

1. Crop monitoring

§ Topsoil Characterization 

§ Crop Biophysical Parameters Retrieval

§ Crop Yield Prediction

2. Pest and Diseases

§ Pest (Locust Forecasting )

§ Diseases (Yellow Rust)

3. Products and Application
39



Locust monitoring and forecasting is of utmost importance due to the
devastating impact these insects can have on agriculture and food security.
Locust swarms can consume vast quantities of crops, leading to severe food
shortages and economic losses.

Crop Pest Remote Sensing Monitoring and Forecasting
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1 Coupling ground data and remote sensing data to quantitatively analyse the
time lag characteristics of key indicators of desert locust occurrence, and to
study the extraction methods of indicators.
2 Developing the remote sensing dynamic forecasting model of desert locust
occurrence coupled with multiple indicator factors to achieve early warning of
desert locus.

Ø Extraction of multivariate
indicators required for
early warning of desert
locust occurrence

Ø Analysis of the lagged
response of desert
locust occurrence to
indicators

Ø Early warning of the
risk of desert locust
occurrence

Objectives

Research content

Case1- Desert Locust Forecasting

Forecasting of Locust with global migratory capabilities
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This study concerns Somalia, Ethiopia, and
Kenya (SEK) in the Great Horn of Africa. It
extends eastwards to the Arabian Sea, across
the Gulf of Aden from Yemen.

SEK can form complementary breeding areas
activated by either spring, summer, or winter
rains. Since 2018, the Indian Ocean Dipole.

They brought SEK extraordinary rainfall
(2018-2019), providing suitable conditions for
desert locust breeding. Mass migration of
swarms from the Arabian Peninsula since June
2019 has culminated in an outbreak of desert
locusts in SEK.

Spatial and temporal distribution of ground points of the desert locust band used for this
study in the SEK region. (a) The geographical location of SEK with band observations in
2000-2020; the red dot represents band presence while the blue triangle refer to
surveyed-absence and the grey one indicates pseudo-absence. (b) Monthly count of bands
from July 2019 to December 2020. (c) Monthly observations of Global Precipitation
Measurement(GPM) V6 in the central SEK region for 20 years(2000-2020); the red line
indicates monthly mean rainfall; the grey area indicates the fluctuation interval.

Desert Locust Forecasting - Study Area
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The surge in rainfall observed 41-64 days before the onset of the desert locust is
a signal for females to lay eggs and can also promote vegetation growth, which
ultimately affects locust corm growth and development

Rainfall

Soil 
moisture

NDVI

The increase in soil moisture from 73-80 days before occurrence to 33-40 days
before occurrence is a booster of locust egg hatching and an early signal of
vegetation growth

The increase in NDVI during the 17-40 days prior to locust infestation acts as a
food source and habitat for locust cysts during their developmental phase,
influencing their growth, development and distribution and aggregation, as well
as an ecological response to meteorological conditions such as precipitation

The 89-96 days and 17-24 days of LST prior to locust infestation influenced egg
hatching rates, mortality and development rates, and therefore acted on both
the pre- and post-desert locust development process

Analysis of time lagged effects of indicator 
factors

LST

Desert Locust Forecasting
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Model for Forecasting Based on a Temporal Sliding Window

SVM was used as the fundamental model for the forecast
for a better overall accuracy throughout the years.

For dynamic indicators, a temporal sliding window selector
was selected to choose trainers and predictors dynamically
based on the time lag information mining from the
historical ground survey information and long time series
of satellite.

Lagging variables of dynamic indicators with lower
significance were removed and those that contributed
highly survived. We then combined other static indicators
for model training and prediction.

A data-driven multivariate approach was proposed
combining machine learning and a temporal sliding
window to predict band occurrence for early.

Multivariate forecasting model training

SVM

Dynamic forecasting of band occurrence

SVM+temporal sliding window of dynamic predictors

Accuracy evaluation and discussion

Desert Locust Forecasting
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Model Evaluation and Accuracy 
Assessment

Dynamic optimal segmentation Confusion matrix construction Calculation of precision indicators

• Dynamic optimal segmentation: the probability threshold corresponding to the Kolmogorov-
Smirnov (KS) statistic (max TPR+TNR) of the training model is used as the optimal
segmentation point to map the prediction results to binary classification results (with/without
risk)

• Confusion matrix construction: the occurrence points of each month reserved from the
training set are superimposed on the classification results as ground truths, and the occurrence
points falling into the risk zone are recorded as true positives; the absence points falling into
the non-risk zone are recorded as true negatives

• Calculation of precision indicators: accuracy, sensitivity, specificity, ROC-AUC, precision
and F1 score were selected as indicators

Desert Locust Early Warning
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Dynamic Forecasting of Desert Locust
Eleven forecast experiments from February to December 2020
demonstrated satisfactory overall performance with an average accuracy of
77.46%, a ROC-AUC value of 0.7666, and an F-score close to 0.7715. The
forecast accuracies for March, April, May, and June were exceptionally high,
above 80%.

Desert Locust Early Warning
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Research Progress

1. Crop monitoring

§ Topsoil Characterization 

§ Crop Biophysical Parameters Retrieval

§ Crop Yield Prediction

2. Pest and Diseases

§ Pest (Grasshopper Forecasting )

§ Diseases (Yellow Rust)

3. Products and Application
47



1. Detect the environmental factors, including meteorological, vegetation, 
topographic, and soil factors, that affect the developmental stages of grasshoppers ;

2. Extract the grasshopper potential suitable habitat associated with meadow and 
typical steppes;

3. Analysis spatial-temporal characteristics of the grasshopper potential suitable 
habitat 

4. Explored the effects of the habitat factors in two steppe types.

Ø extract the distribution 
of the grasshopper 
potential habitat

Ø analyze the spatial-
temporal characteristics 
of the grasshopper 
potential habitat

Ø detect the different effects 
of key environmental 
factors in the meadow and 
typical steppe

Objectives

Research content

Case2- Grasshopper Monitoring

Monitoring for Locust migrating in small areas
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In this study, two major steppe types of Xilingol league
(42°32ʹ~46°41ʹN, 111°59ʹ~120°00ʹE) were selected as
the study area (Figure a):
• meadow steppe (Figure b)
• typical steppe (Figure c).
The meadow steppe in the Xilingol often occurs on
Castanozem and saline-alkalized soils with poor fertility.
The dominant grass L. chinensis has strong colonization
capability.
In the typical steppe, the most abundant grasses were
Stipa Grandis and Achnatherum sibiricum, which are
more favored by grasshoppers. Additionally, compared
with the meadow steppe, the fractional vegetation
coverage is lower in the typical steppe. Therefore, it is
easier to cause grasshopper infestation.

Study Area

(a) Location of the study area; (b) location of the meadow steppe area and 
grasshopper occurrence points from 2018 to 2022; and (c) location of the typical 
steppe area and grasshopper occurrence points from 2018 to 2022.

Grasshopper Forecasting
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The growth and occurrence of grasshoppers are affected by the climate, soil, vegetation, and topography. 
Through the correlation between factors, 14 habitat factors were selected to extract the grasshopper 
potential suitable habitat.

Environmental variables influencing grasshoppers in each developmental stage.

Category Environmental 
Variables

Detailed
Description of Environmental Variables

Spatial 
Resolution

Topography
Elevation

Slope
Aspect

90 m
90 m
90 m

Meteorology

Land surface 
temperature

Minimum land surface temperature in the egg stage 
(EMinLST); nymph stage (NMinLST)

Mean land surface temperature in the nymph 
stage(NMeanLST); adult stage(AMeanLST)

1 km

Precipitation Precipitation in the egg stage (EPre)
Precipitation in the nymph stage (NPre)
Precipitation in the adult stage (APre)

0.1°

Soil
temperature

Soil temperature in the egg stage (EST)
Soil temperature in the nymph stage (NST)
Soil temperature in the adult stage (AST)

1 km

Vegetation
Vegetation type 1 km
Aboveground 

biomass
Aboveground biomass in the nymph stage (NAB)
Aboveground biomass in the adult stage (AAB)

1 km

Soil
Soil type 1 km

Soil salinity
index

Soil salinity in the egg stage (ESI)
Soil salinity in the nymph stage (NSI)
Soil salinity in the adult stage (ASI)

1 km

Correlation
calculate

Environmental factor correlation 
results from 2018 to 2022. 
(a) 2018; 
(b) 2019; 
(c) 2020; 
(d) 2021; 
(e) 2022

Grasshopper Forecasting - Select Influence factors
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Extraction Method of Grasshopper Potential Suitable 
Habitat
p MaxEnt was applied to extract the

distribution of grasshopper potential
suitable habitat.

p Grasshopper potential suitable habitat
maps were generated using the
bootstrap approach with replicates set
to 50;

p Training (70%) and testing (30%) datasets
has been set for each year;

p Model accuracy was evaluated in terms
of the omission rate and predicted area
(ORPA) and the area under the curve
(AUC) of the receiver operating
characteristic (ROC) curve;

p Three levels of possibility were set: less
suitable (0–0.5), moderately suitable
(0.5–0.7), and most suitable (0.7–1).

Year 
Area of Meadow Steppe (km2) Area of typical Steppe (km2)  

Most Suitable 
Moderately 

Suitable 
Less Suitable Most Suitable Moderately Suitable Less Suitable 

2018 44 407 32,853 1091 8829 110,098 
2019 101 1135 32,068 1055 12,460 106,503 
2020 64 691 32,549 686 10,341 108,991 
2021 192 1218 31,894 672 10,854 7491 
2022 102 1622 31,580 1192 7491 111,335 

 

Spatial distribution of the GPHs in the meadow and typical steppe from 2018 to 2022

Areas of each suitability level in the meadow and typical steppes from 2018 to 2022. 

Grasshopper Forecasting

51



Temporal Variation Characteristics of 
Grasshopper Potential Suitable 
Habitat

Ø the suitability index changes corresponding to each 
pixel were analyzed;

Ø the significance of these changes was tested 
according to the F value from 2018 to 2022. 

Ø Only the trends that passed the F test had 
significant p values, meaning that the trend of the 
suitability index changed. The p value selected for 
this study was 0.1, meaning that at this level, the 
trend at least marginally significantly changed.

Main Influencing Factors in the 
Meadow and Typical Steppes

Ø We regarded the factors with cumulative 
contributions exceeding 80% as the main influence 
factors. 

Ø EST, soil type, vegetation type are the same important 
factors for two steppes ;

In the meadow steppe, the EST, vegetation type, soil type, 
and aspect were the vital factors
In the typical steppe, the vegetation type, EST, soil type, 
and NPre were the vital factors

(a) The trends of the suitability index in meadow grasslands; and (b) typical steppe. environmental factors contributions from 2018 to 2022 in the (a) meadow steppe, and (b) typical steppe. 

Grasshopper Forecasting
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Research Progress

1. Crop monitoring

§ Topsoil Characterization 

§ Crop Biophysical Parameters Retrieval

§ Crop Yield Prediction

2. Pest and Diseases

§ Pest (Locust and Grasshopper Forecasting )

§ Diseases (Yellow Rust)

3. Products and Application
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Data on crop (wheat and maize) areas affected by yellow rust have been collected by exploiting the 
opportunity offered by the participation to another ESA funded project (Afri4Cast). 

Field data collection campaigns – Crop Disease

Up to now two field campaigns have 
been carried out in collaboration with 
the University of Nairobi:

5 – 17 June 2023 & 9 – 18 July 2023 
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Yellow rust detection and monitoring

For what concerns crop threats, the core of the system aiming at detecting yellow rust outbreaks in
maize and wheat crops, will be built on S2 and PRISMA satellite.
Several VIs (NDVI, SIPI, PRI, PSRI, MSR) computed by using multispectral and hyperspectral images
has been used to implement a Diseases Infection Index (DII).

Coupling ground data and remote
sensing data to quantitatively the
presence of yellow rust in wheat and
maize agricultural fields.

Objectives

Research content

Ø Extraction of 
multivariate indicators 
required for early 
detection of yellow rust.

Ø Validation of the
indicators through
field data.

Ø Crop type maps and 
maps of yellow rust 
potential presence 
on wheat and maize 

Disease index (%)
Narok county, 

Kenya – 21/08/2022 

Red-Edge Stress index 
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Yellow rust detection and monitoring

Disease index (%)

Narok county, Kenya – 12/06/2023 

Red-Edge Stress index 

Disease infection index (mid-season because taken in the months of full growth of wheat and maize in Kenya)
and the red edge stress index are shown.
Scales range from to 100 % for DII like probability of infection.
While for the red edge, higher than 50-60 there should be a correlation with the rust.
Results have not been validated yet. 56



Research Progress

1. Crop monitoring

§ Topsoil Characterization 

§ Crop Biophysical Parameters Retrieval

§ Crop Yield Prediction

2. Pest and Diseases

§ Pest (Locust and Grasshopper Forecasting )

§ Diseases (Yellow Rust)

3. Products and Application
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Products and Application

Based on the above achievements, we have successfully monitored the major breeding areas and migration paths of desert locust in

the Asia-Africa region from 2018 to 2023. We have also conducted remote sensing monitoring of disaster situations in key affected

countries and continuously updated the dynamics of their impact. This has provided vital information support for locust disaster

emergency response. Our analysis has revealed that Pakistan, Yemen, and countries in the Horn of Africa such as Somalia, Ethiopia,

and Kenya are among the most severely affected by desert locust.

Results of Desert Locust Migration Paths and Disaster Remote Sensing Monitoring in the Asia-Africa Region from 2018 to 2023

Pakistan IndiaEthiopia

Yemen Kenya

Nepal
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Products and Applications

p Using MODIS, Sentinel, SDGSAT-1, and GF satellite data, we have conducted crop disease and pest monitoring and forecasting in

major grain-producing countries worldwide. Multiple disaster monitoring and assessment products have been released as of now.

p All reports and data have been adopted and globally published by the Food and Agriculture Organization (FAO) of the United

Nations and the Global Biodiversity Information Facility (GBIF), providing decision support for global joint prevention and control

of crop diseases and pests. We have received thank-you letters from multiple countries, including Pakistan, Somalia, and Iraq. Our

achievements have been adopted by the National Forestry and Grassland Administration, the Ministry of Agriculture and Rural

Affairs, and other relevant authorities.

https://data.apps.fao.org/ https://www.gbif.org/

Achievements were selected as GEO 
Highlights and Important 

Developments at GEO Week 2021

Thank-You Letters from Countries 
including Somalia, Ethiopia, and Pakistan

Thank You Letter 
from the National 

Forestry and 
Grassland 

Administration
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Example(s) of developed service product(s): crop early warning 
HR

Indicator name Explanation

CCI CCI time series based on last 6 years of Sentinel-2 images (actually in production 
phase)

TAI Temperature anomalies time series computed from the time of the crop growth 
starting season

Rain Precipitation shortage cumulative value starting from one month in advance with 
respect the crop growth starting season

Rain TAICCI CREW



Crop early warning: medium resolution
• Crop monitoring

The service provides maps in geotiff format.

The files contain: an integer number comprised from 1 to 4 
corresponding to the level of warning.

The maps are provided on an 8-days frequency with maximum 
two days delay with respect the last day of the synthesis period.

The output files have the following characteristics:

- Geotiff format.

- Spatial resolution: 250 m. Reference system: WGS 84.

- 1 band.

- Frequency: 8 days

- Band meaning: level of warning. 4 levels of warning are 
considered: 1 = low warning, occurs when only NDVI anomaly is 
detected in the period, 2 = medium warning, occurs when NDVI 
anomaly, accompanied by temperature anomaly, is detected in the 
period, 3 = high warning occurs when NDVI anomaly, 
accompanied by precipitation anomaly, is detected in the period, 4 
= very-high warning occurs when temperature, precipitation and 
NDVI anomalies are detected in the period.

- Band 1 range values: 0 – 4, bad value = -1, Out of the ROI = -1111

Crop early warning based on NDVI Anomaly, Temperature 
Anomaly and Precipitation Anomaly, date: 17 May 2021. The figure 
refers to a low warning due to NDVIA (level of warning = 1). 
Provinces shown in grey refers to low crop areas (less than 10%).
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