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Context

In recent years, newly launched satellites have achieved multi-satellite networking,
meter-level spatial resolution, and a global revisit cycle of 2-5 days

Better than meters spatial resolution, 2-5 days CEOS, ESA, NASA, NRSCC pay more

short revisit
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‘@mm: Context . | @ eSa

Remote sensing due to its high spatial resolution (meters), high temporal (2-5 Days revisit), hyperspectral

(hundreds bands) advantages in vegetation is suitable for monitoring, forecasting, and assessing crop growth,

diseases, pests, and yield

Plant distribution & phenology Environmental factors

Plant distribution Temperature

EO data for vegetation monitoring

Phenology




Project’s framework and objectives

* Respond to the need to update and optimize the crop biophysical variable retrieval for
agricultural soil and crops using current and present generation EO data considering errors
and uncertainties in the remote sensing observations

* Exploit different data processing/assimilation approaches that address the issues of the multi-
scale and multivariate nature of the retrieved variables

1)

1)

1i1)

retrieval of crop related bio-physical variables by using RTM, hybrid and empirical models to
simulate the interaction of light with vegetation at leaf and canopy levels;

retrieval of agricultural topsoil properties (texture and soil constituencies), using multivariate
techniques including machine learning approaches;

optimization of data assimilation procedures of the multivariate and multi-scale remotely sensed
variables into agricultural models for yield, quality and biotic & abiotic disease estimation;

development of innovative methods for crop pests and diseases monitoring at the regional scale, with
two typical diseases and pests in winter wheat, e.g. stripe rust and powdery mildew, as examples;

evaluation of parameters potentially predisposing the onset of pests and diseases;

exploitation of the DIAS systems.



EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for
no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert “ftp”

ESA /Copernicus Missions ESA Third Party Missions Chinese EO data

1.Sentinel-1 20 L sl 25 1.GF-1 50

2.Sentinel-2 300 2.GF-2
2.MODIS 30 ¢ >

Total: 320 3.GF-6 60

20

Issues: China and EU sites 3.Planet 4.7Y-3 20
4. PRISMA 50 5FY 50
5. ENMAP 3 Total: 235
Total: 128 Issues: mostly on China and worldwide

Issues: both China and EU



Training of Young Scientists

Shandong University of Science Reflections and Applications of Hierarchical
Zhenhai Li and Technology Modeling in Agricultural Remote Sensing Young scientists

Aerospace Information Research Spatiotemporal Distribution And Main Influence
Institute, Chinese Academy of  Factors Of Grasshopper Potential Habitat In Two

Jing Guo Science Types Of Steppes In Inner Mongolia, China Doctor
Hao Yang Beijing Academy of Agriculture and Forestry Sciences Young scientists
Linyi Liu Aerospace Information Research Institute, Chinese Academy of Science Young scientists
Yu Zhao Beijing Academy of Agriculture and Forestry Sciences Young scientists
Dong Han Beijing Academy of Agriculture and Forestry Sciences Young scientists

Lei Lei Beijing Academy of Agriculture and Forestry Sciences Doctor

Ruigi Sun Aerospace Information Research Institute, Chinese Academy of Science Master,



@mgcc European Young scientists contributions in Dragon 5 @esa

Poster title Contribution including period of
research

Francesco Rossi University of Rome A Study On The Effects Of Data pre-processing including BRDF

“La Sapienza” Viewing Angle And Solar model. Crop biophysical vegetation
Participated by Geometry Variation In Crop parameter and soil (texture and
CNR IMAA EO Observation. constituencies) retrieval parameter via
MLR and hybrid methods
Simone Saquella  University of Rome Not funded by Dragon 5 Crop mapping, monitoring and algorithm
“La Sapienza” development for pests and diseases
detection.
Saham Mirzaei CNR IMAA Not funded by Dragon 5 Classification hyperspectral data for crop

mapping, spectral indices for biophysical
crop parameter retrieval (pigments,
proteins)



ez Setting of Project Research Content  @esa

Part 1
Soil Property Retrieval
Provide Soil Based on Remote Sensing Technology Provide Soil
Information Information
(Fertility Map) (Fertility Map)
Provide the
Part 2 Primary Factors Part 3
Crop Biophisical Retrieval g Crop Pest Remote Sensing Monitoring and
Based on Remote Sensing Technology Forecasting
Models Key Input Models Key Input
Factors Factors

EO Agricultural Products & Application Services



Research Progress

1. Crop monitoring
= Topsoil Characterization
= Crop Biophysical Parameters Retrieval
= Crop Yield Estimation
2. Pest and diseases Monitoring and Forecasting
= Pest (Locust and Grasshopper)
= Diseases (Yellow Rust)

3. Products and Application

10



®ue: Topsoil Characterization

With the launch of the next generation of hyperspectral satellite sensors in the next years, a high potential

to meet the demand for global soil mapping (soil fertility map) and monitoring is appearing.
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@mg Topsoil Characterization

The topsoil properties were investigated using a five-point sampling method, and for each sampling area the
specific sampling locations are shown below.

First remove any plants, stones, etc. from the surface of the soil and dig out small pits using tools.

Take an appropriate amount of top soil along the cut surface from the bottom upwards, to a depth of

approximately 20cm
The soil obtained from the five points was mixed well, placed in plastic bags and sent to the laboratory for testing

* <.
PH
Total Nitrogen (%) =
Organic Matter (%) 8 2
Soil Organic Matter (g/kg)
Soil Nitrogen Content (g/kg) )
Effective Phosphorus (g/kg) ’
Available Potassium (mg/kg) o0m
oM TN AP AK pH oM TN AP AK pH
(%) (g/kg) (mg/kg) (mg/kg) (-) (%) (g/kg) (mg/kg) (mg/kg) (-)
1.18 0.71 4.87 85.00 7.71 1.12 0.86 543 62.00 7.54
2.46 1.44 36.33 318.00 8.17 2.75 1.56 74.20 243.00 8.17
1.81 1.03 15.68 138.40 7.91 1.86 1.16 18.66 121.53 7.96

0.23 0.14 7.74 46.64 0.10 0.43 0.20 12.12 46.91 0.12



@mgcc Topsoil Characterization Data Flow

Bare Soil spectra recognition Data spectral pre-treatment
PRISMA co-registered A B
image
|
Linear Spectral Unprocessed Absorbance
Unmixing
Endmembers Fractions
Raster
Vegetation depurated
raster
Vegetation and J Median Savitzky DER Savitzky | | Savitzky SNV
| depurated raster of Filter —Golay 0 -Golay 1 —Golay 2
pixels with a f,,; >85% Scil Properties
Cellulose
BD 2100nm<0.025
mask
SNV SNV
Bare soil spectra

library
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@fﬂm‘ Data Flow MLR algorithms tested

Many methods for applying data-mining approach to soil spectral information have been used and developed,
from multiple linear regression (MLR) analysis (of the spectra against the chemical/physical data) through
principal component analysis regression, partial least squares regression (PLSR), artificial neural networks (ANN)
and random forest among others.

Group Machine Learning Retrieval Algorithm

Least Squares Linear Regression

Partial Least Squares Regression

Linear Models Regularized Least-Squares Regression

Principal Components Regression

Elastic Net Regression

Splines and Polynomials Adaptive Regression Splines

Bagging trees

Tree Models Random Forest

Canonical Correlation Forests

Support Vector Regression

K | Meth i i
ernel Methods Kernel Ridge Regression

Gaussian Processes Gaussian Processes Regression 14




Explore the synergic use of the constrained Linear Mixing Model (LMM) to separate bare soil and green

vegetation (PV) and NPV by the cellulose BD @ 2100nm.
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u@/ﬂm’ Data Flow bare soil pixel selection
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Data Flow MLR algorithms tested

SOC MF Support Vector Regression 0.24 0.24 0.39 1.26 1.74
TN SG2_Abs Support Vector Regression 0.30 0.13 0.58 1.56 1.57
AP snv_SG2_abs Random Forest 0.59 4.70 0.60 1.58 2.26
AK snv_SG1_abs Random Forest 0.85 24.59 0.59 137 1.66
PH Untreated Regularized least-squares regression 0.65 0.07 0.25 1.34 1.82

B PRISMA mS-2

2,5

1,5

1

0,5

0
SOC TN AP AK

RPIQ

PH

SOC S2_Absor Canonical Correlation Forests 0.92 0.29 0.25 1.18 0.75
TN S2_Absor Random Forest (TreeBagger) 0.71 0.16 0.44 1.34 1.18
AP S2_Refl Support Vector Regression 0.02 11.34 0.30 1.03 1.53
AK S2_Absor Partial least squares regression 0.59 42.60 0.46 1.33 1.81 13

PH S2_Refl Kernel ridge Regression 0.55 0.11 0.23 1.13 1.45



Organic
Soil constituents’ prediction maps Matter

obtained applying the best performing
MLRA and preprocessing on the
PRISMA image of 05-November-2022.

Effective
Phosphorous

For each subplot on the left are the fields
in the South-West corner of the study
area and on the right the fields in the
North-East corner. Black pixels belong
to pixels covered by vegetation and
dominant in NPV residues.

The predictions by using PRISMA are
better than those obtained by S-2 both
in terms of RMSE and RPD.
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The predicted accuracy for nutrients
retrieval in terms of RMSE (24.59 mgkg!
for P; 4.70 mgkg-! for K) is comparable to
the one given by Song et al. 2018 and Yu et
al. 2018 on different Chinese test sites

using lab spectra
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Research Progress

1. Crop monitoring
= Topsoil Characterization

= Crop Biophysical Parameters Retrieval

= Crop Yield Prediction

2. Pest and diseases
= Pest (Locust and Grasshopper Forecasting )
= Diseases (Yellow Rust)

3. Products and Application

20



g@/ﬂm’ Field Data Collection Campaigns — biophysical variables @ Cesa

Canopy Variables:
- ey . . e LAI
Definition of field measurement and sampling methods. . RemE
o . . « FAPAR
Measurement protocol and validation metrics for crop vegetation
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\mscField Data Collection Campaigns - biophysical variables @esa

Definition of field measurement and sampling methods.

« EWT
- LMA
« N%
« C%
« Cab
« Car

Q 12 leaf disks per transect from
4x3 leaves [60 disks per ESU]

> 50% dried for EWT & LMA

> 50% frozen - 20°C for Cab
& Carotenoids lab analysis

Leaf Variables:
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{®uscc Field Data Collection Campaigns - biophysical variabldeesa

Field monitoring campaigns at the Maccarese site (IT): 2022 maize season

22 ESQ maize
(3 campaigns +PRISMA images)
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@mm Spectral Algorithm for crop biophysical Retrieval @ eSsa

EWT leaf equivalent water thickness (LEWT) is an important parameter in ecological and environmental
monitoring. It applies the Beer-Lambert law to inversely determine (constrained minimization) the optical
thickness d of the water layer responsible for the water absorption feature at 970 nm

BD=1-RC
/ Rl‘)
Gaussian fitting of the 900-1100nm spectra R = T
e KA
<> CW, FWHM constrained min

(Generalized Reduced Gradient Method})



a@fm‘f Spectral Algorithm for crop biophysical Retrieval

Performance on simulated data

CwW
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@/mg Hybrid methods for biophysical variables retrieval @esa
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msce Hybrid methods for biop
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@,‘m Hyperspectral vs Multispectral

__PRISMA | _BIAS | RMSE | RRMSE | __MAD | Rz | Pearson RPD | RPIQ

0.12m2m-—2 0.78 m2m-2 0.25 0.61 m2m-2 0.87 0.93 2.23 2.04

LCC 5.59 ug cm~2 11.45 ug cm—2 0.26 8.99 ug cm—2 0.46 0.68 1.21 1.41
FCOVER 0.06 0,15 0.21 0.12 0.71 0.84 1.72 2.01
-0.14 0.16 0.29 - 0.15 0.78 0.88 1.06 1.33

0,6
0,5
0,4

0,3
0,2
0’1 .

0
FCOVER FAPAR

_-E\j-“mm

0.44m2m-—=2  0.99 m2m-2 0.32 0.78 m2 m~2 0.78 0.88 1.74 2.3
-5.20 g cm~2 23.25 ug cm-2 0.53 18.75 ug cm=2 0.15 -0. 39 1.21 1.40
FCOVER 0.10 0.25 0.37 0.17 0.43 0.65 1.68 2.00

-0.06 0.23 0.42 0.19 0.46 0.68 1.08 1.35
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‘@/ﬂm' Crop Biophysical Retrieval Based on Optical and Radar RS data @ €Sd

High-precision remote sensing inversion products of vegetation leaf area index in key regions around the world

O Take advantage of the high spatial resolution of Sentinel-2 data to improve the spatiotemporal resolution and inversion
accuracy of leaf area index products

O Establish an inversion model that couples optical and radar data to solve the problem that the inversion accuracy is affected
by vegetation canopy characteristics (such as plant shape)

LAl inversion model combining active and

)'*)/

xV
P, 1054
us v e
r e ooa L
a5
a a
‘:v nzt a
. a (
= B a2 n C— L4
= 215 - .
s g ‘-? 4 r a
i demt
o -y - -
- 2 La F n
Nu I
o SR o
- - 'ILL—._-}
v B e v -
. e EE -'f;.- A 2
T 1‘19_,;“ * b o
L

Relationship between
backscattering coefficient and LAl

passive methods

R V] Freeman = L
P, +P,+F,

Radar Vegetation Index

LAI = B, * ALA" * NDVI"

Freeman *2'5*(RNir _RRed) / (1+RN[r +6*RRed _7‘5*RRed)

0 #Xas -7 b
S| 06 s 4
v - = c n 1
u 5 -
SR g
- e MY
35;5 4 Wt e > >
- r U te
i e e LT
= e o
® 0 "'.;.'-*' » "
-l e L I
o % T
S
> gt
0 . .
Y - n < ian [0
Ly

Relationship between Integrated
vegetation index and LAl

direct test results

Crops and grasslands in Jiu San
Reclamation Area of Heilongjiang, Luohe of
Henan, Shunyi of Beijing and Xilingol were
selected for verification, and the calculation
accuracy was
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index method, the LAl inversion algorithm

based on vegetation-sensitive bands can effectively improve the inversion accuracy,

with R? up to 0.87 and RMSE<0.74.

O Vegetation inversion products based on Sentinel-2 and high-resolution_data not
only have higher spatial resolution , but also have more complete spatial continuity.



Crop Biophysical Retrieval Based on MLRA @ cSa

High-precision remote sensing inversion products of vegetation chlorophyll content in key areas around the world

O Proposed a multi-source high-resolution satellite data fusion scheme to improve the data quality and spatial and
temporal resolution of the product;

O a chlorophyll inversion model for global key areas based on the random forest model (RF) to achieve high-precision
dynamic inversion of chlorophyll content and vegetation growth monitoring

Technical plan for chlorophyll content

: ion i : Direct test results: R2=0.80, RMSE=7.61 Indirect test results: comparison
inversion in key regions around the world with MODIS
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Crop Biophisical Retrieval Based on MLRA

High-precision remote sensing inversion products of vegetation chlorophyll content in key areas around the world

O Produced 20- meter resolution time-series high-precision vegetation chlorophyll content remote sensing inversion

products from 2017 to 2021

Huanghuaihai area Main grain-producing areas in the middle and lower reaches of

. . . 110°0'0"E 120°0'0"E 110°0'0"E 120°0'0"E the Yan tze River
® The dynamic monitoring product of . 48 . 9
vegetation chlorophyll content displays the A o A
0 < "
growth status of crops and grassland in key | BT T . . B.Zhang, H. Ye, Lu. W, et al
. , H. Ye, Lu. W, .
areas at home and abroad. : : Remote Sensing . 2021, 13, 2083.
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Research Progress

1. Crop monitoring
= Topsoil Characterization
= Crop Biophysical Parameters Retrieval
= Crop Yield Prediction
2. Pest and diseases
= Pest (Locust and Grasshopper Forecasting )
= Diseases (Yellow Rust)

3. Products and Application
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Research content 10
» Constructing yield . > Analyzing the > Generating a high- % :
model suitable for ' | spatiotemporal resolution Chinese g,
large area scale : scalability of the winter wheat yield 2

| 0

& Crop Yield Prediction - background

Generating spatial crop yield information is of great significance for academic research and guiding agricultural
policy. Existing public yield datasets have a coarse spatial resolution, spanning from 1 km to 43 km, they cannot
deal with small-scale spatial heterogeneity, which happens to be the most significant characteristic of the Chinese
farmers' economy.

Objectives

To propose a semi-mechanistic model combining remote sensing observations and
regional meteorological information, which can simultaneously overcome inter-
annual and cross-regional problems.

To generate a high-resolution Chinese winter wheat yield dataset
(ChinaWheatYield3om) for the period 2016-2021.

12

yield model dataset
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@Igggg Crop Yield Prediction - Study Area

This study area consists of the main winter
wheat-growing region of China.

The main winter wheat production areas are
mainly distributed in the Huang-Huai-Hai
region (HHH), Southwest China (SW), Gansu-
Xinjiang region (GX), the middle and lower
reaches of the Yangtze River (MLYR), and the
Loess Plateau (LP).

Most of the regions are in the middle of China
and includes temperate-continental monsoon,
temperate monsoon, and  subtropical
monsoon climates.

The sown area and production of winter
wheat in China accounted for 20.02% of staple
food crops in 2021 (National Bureau of
Statistics of China, 2021), respectively.
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Distribution of winter wheat within the study area and three selected example areas.
Region 1, 2, and 3 is available at http://lbs.tianditu.gov.cn/server/MapService.html and
represent areas with winter wheat coverages below 25%, around 50%, and above 75%,
respectively, serving as representative regions for these respective coverage levels.
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L@’”FL’C Crop Yield Prediction - Result

We generated a 30-m Chinese winter wheat yield dataset (ChinaWheatYield30m) by
Hierarchical Linear Modeling (HLM) for major winter wheat region in China for the period

2016-2021.
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@,gggﬁrop Yield Prediction - Regional expansion verification @esa
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€ esa

The wheat yield in North China's main province in 2023 has
decreased compared to 2022's average yield, consistent with

@,gggg Crop Yield Estimation Based on Remote Sensing Technology

To date, the highest-resolution yield dataset:
ChinaWheatYield30m
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Research Progress

1. Crop monitoring
= Topsoil Characterization
= Crop Biophysical Parameters Retrieval
= Crop Yield Prediction
2. Pest and Diseases
= Pest (Locust Forecasting )
= Diseases (Yellow Rust)

3. Products and Application
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ecsa

\wesceCrop Pest Remote Sensing Monitoring and Forecasting

Locust monitoring and forecasting is of utmost importance due to the
devastating impact these insects can have on agriculture and food security.
Locust swarms can consume vast quantities of crops, leading to severe food
shortages and economic losses.
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a@"”ﬂ‘lf Casel- Desert Locust Forecasting

Forecasting of Locust with global migratory capabilities
Objectives

1 Coupling ground data and remote sensing data to quantitatively analyse the
time lag characteristics of key indicators of desert locust occurrence, and to
study the extraction methods of indicators.

2 Developing the remote sensing dynamic forecasting model of desert locust
occurrence coupled with multiple indicator factors to achieve early warning of
desert locus.

Research content

» Extraction of multivariate | . » Analysis of the lagged » Early warning of the
. . . I
indicators  required fOF: response of desert risk of desert locust

early warning of desert | locust occurrence to occurrence
1

locust occurrence I indicators
1




‘_@mm: Desert Locust Forecasting - Study Area
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@/mc Desert Locust Forecasting

Analysis of time lagged effects of indicator
factors

The surge in rainfall observed 41-64 days before the onset of the desert locust is
a signal for females to lay eggs and can also promote vegetation growth, which

ultimately affects locust corm growth and development

vegetation growth

The increase in NDVI during the 17-40 days prior to locust infestation acts as a

food source and habitat for locust cysts during their developmental phase,g
influencing their growth, development and distribution and aggregation, as well

as an ecological response to meteorological conditions such as precipitation

The 89-96 days and 17-24 days of LST prior to locust infestation influenced egg

hatching rates, mortality and development rates, and therefore acted on both

the pre- and post-desert locust development process

The increase in soil moisture from 73-80 days before occurrence to 33-40 days
before occurrence is a booster of locust egg hatching and an early signal of
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‘_@mm: Desert Locust Forecasting

Model for Forecasting Based on a Temporal Sliding Window

Multivariate forecasting model training

SVM was used as the fundamental model for the forecast T T T ey k

for a better overall accuracy throughout the years,. = ~———==============oo=o=2°°2 -

For dynamic indicators, a temporal sliding window selector : - N
was selected to choose trainers and predictors dynamically Dynamic forecasting of band occurrence

b?lsed, on the time lag.lnformgtlon mining .from t_he I SVM+tempora1 sliding window of dynamic predictgrs
historical ground survey information and long time series === ========-=-=--=---=-=-=-=---=----=-- J
of satellite. .
Lagging variables of dynamic indicators with lower Accuracy evaluation and discussion

significance were removed and those that contributed
highly survived. We then combined other static indicators
for model training and prediction. oo

Temporal sliding
windows of historical
dataset as trainers

|

A data-driven multivariate approach was proposed
pp prop 8 days 8 days Dynamic forecast
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IagIO [ofSM ' Ia;,()5 of SM Temporal sliding
—— " windows of predictors
| lag05-lag03 of NDVI

lagl2 of LST 44



@/mp Desert Locust Early Warning

Model Evaluation and Accuracy

* Dynamic optimal segmentation: the probablhty threshold correspondlng to the Kolmogorov-
Smirnov (KS) statistic (max TPR+TNR) of the training model is used as the optimal .. MEEER bl
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@/ﬂgtc Desert Locust Early Warning

Dynamic Forecasting of Desert Locust R

Eleven forecast experiments from February to December 2020

demonstrated satisfactory overall performance with an average accuracy of |
77.46%, a ROC-AUC value of 0.7666, and an F-score close to 0.7715. The L il

(d) May 2020 (f) July 2020

forecast accuracies for March, April, May, and June were exceptionally high, %e? il
10°N (# % G’é‘ 1
above 80%. o ML P
Evaluation Metrics oN S / ,
Dat o 9 < W
ate Accuracy (%)  Sensitivity Specificity ROC-AUC F-Score CeE wm e s WE AE AvE T SE WE ASE S0
February 2020 74.44 0.6047 0.8759 0.7403 0.7792 o v
March 2020 80.15 0.6934 0.9329 0.8131 0.7930 wy R | By
April 2020 82.59 0.7264 0.9002 0.8133 0.7811 25T S
May 2020 88.68 0.8886 0.8814 0.8850 0.9218 "R ey
June 2020 85.31 0.8971 0.6667 0.7819 0.9081 o ~ AR ~
July 2020 70.00 0.6167 0.7714 0.6940 0.6549 o N -

August 2020 76.99 0.6238 0.9412 0.7825 0.7453 nialrivasag ittt
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Research Progress

1. Crop monitoring
= Topsoil Characterization
= Crop Biophysical Parameters Retrieval
= Crop Yield Prediction
2. Pest and Diseases
» Pest (Grasshopper Forecasting )
= Diseases (Yellow Rust)

3. Products and Application
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@gggg Case2- Grasshopper Monitoring

Monitoring for Locust migrating in small areas

Objectives

1. Detect the environmental factors, including meteorological, vegetation,
topographic, and soil factors, that affect the developmental stages of grasshoppers ;

2. Extract the grasshopper potential suitable habitat associated with meadow and
typical steppes;

3. Analysis spatial-temporal characteristics of the grasshopper potential suitable
habitat

4. Explored the effects of the habitat factors in two steppe types.

Research content

|
|

potential habitat typical steppe

| > extract the distribution | | > analyze the spatial- » detect the different effects
i of the grasshopper i temporal characteristics of key environmental

! potential habitat : of the grasshopper factors in the meadow and
| |

: :



i Grasshopper Forecasting

Study Area R i SO,
In this study, two major steppe types of Xilingol league Legend s
(42°32'~46°41'N, 111°59'~120°00'E) were selected as |r—IMeadow steppe
: . O Typical steppe AT i : . .
the study area (Figure a): e Gl s
« meadow steppe (Figure b) ; o e N B
* typical steppe (Figure c). ,,’ /-
The meadow steppe in the Xilingol often occurs on vy YO X e

Castanozem and saline-alkalized soils with poor fertility.
The dominant grass L. chinensis has strong colonization

capability.

Liaoning

In the typical steppe, the most abundant grasses were

Stipa Grandis and Achnatherum sibiricum, which are e

more favored by grasshoppers. Additionally, compared - Tianjing

with the meadow steppe, the fractional vegetation Hebei £ s e
coverage is lower in the typical steppe. Therefore, it is 0 100 200 km T ;,m
easier to cause grasshopper infestation. (2) Location of the study area: (b) locan‘Jon of the meadow steppe area and

grasshopper occurrence points from 2018 to 2022; and (c) location of th% écypical
steppe area and grasshopper occurrence points from 2018 to 2022.



The growth and occurrence of grasshoppers are affected by the climate, soil, vegetation, and topography.
Through the correlation between factors, 14 habitat factors were selected to extract the grasshopper

potential suitable habitat.

Environmental variables influencing grasshoppers in each developmental stage.

Category Environmental Detailed Spatial
Variables Description of Environmental Variables Resolution
Elevation 90 m
Topography Slope 90 m
Aspect 90 m
Land surface =~ Minimum land surface temperature in the egg stage 1 km
temperature (EMinLST); nymph stage (NMinLST)
Mean land surface temperature in the nymph
stage(NMeanLST); adult stage(AMeanLST)
Meteorology Precipitation PI‘C‘Ci‘pit?ltiOI.l in the egg stage (EPre) 0.1°
Precipitation in the nymph stage (NPre)
Precipitation in the adult stage (APre)
Soil Soil temperature in the egg stage (EST) 1 km
temperature Soil temperature in the nymph stage (NST)
Soil temperature in the adult stage (AST)
Vegetation type 1 km
Vegetation Aboveground Aboveground biomass in the nymph stage (NAB) 1 km
biomass Aboveground biomass in the adult stage (AAB)
Soil type 1 km
Soil Soil salinity Soil salinity in the egg stage (ESI) 1 km
index Soil salinity in the nymph stage (NSI)

Soil salinity in the adult stage (ASI)

Correlation

calculate

=)

Environmental factor correlation
results from 2018 to 2022.

(a) 2018;
(b) 2019;
(c) 2020;
(d) 2021;
(e) 2022
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i Grasshopper Forecasting

Extraction Method of Grasshopper Potential Suitable

Habitat

-

I O MaxEnt was applied to extract the'

: distribution of grasshopper potential :

| suitable habitat. I

I' 0 Grasshopper potential suitable habitat:

: maps were generated using the

I bootstrap approach with replicates set |

I to 50; : o

: O Training (70%) and testing (30%) datasets | A e A ey s
I has been set for each year; ' T imbl
: O Model accuracy was evaluated in terms:

| of the omission rate and predicted area | Spatial distribution of the GPHs in the meadow and typical steppe from 2018 to 2022

I (ORPA) and the area under the curve:

: ( AU C) of the receiver ope rating | Yo Area of Ml\ie:)c(li(::za tSetleppe (km?) Area of typical Steppe (km?)

I Characteristic (ROC) curve; | Most Suitable Suitabley Less Suitable Most Suitable Moderately Suitable Less Suitable
I'00 Three levels of possibility were set: less : 2018 44 407 32,853 1091 8829 110,098

| 2019 101 1135 32,068 1055 12,460 106,503

,  suitable (0-0.5), moderately suitable | 2020 64 691 32,549 686 10,341 108,991

| (05-0.7),andmostsuitable (07-1). | m o mn o mm o ww

Areas of each suitability level in the meadow and typical steppes from 2018 to 2022.



i Grasshopper Forecasting

Grasshopper Potential Suitable

%zmilat
» the suitability index changes corresponding to each

>

>

pixel were analyzed;

the significance of these changes was tested
according to the F value from 2018 to 2022.

Only the trends that passed the F test had
significant p values, meaning that the trend of the
suitability index changed. The p value selected for
this study was 0.1, meaning that at this level, the
trend at least marginally significantly changed.

Main Influencing Factors in the

Meadow and Typical Steppes

A We regarded the factors with cumulative
factors.
factors for two steppes ;

and aspect were the vital factors

and NPre were the vital factors

contributions exceeding 80% as the main influence
» EST, soil type, vegetation type are the same important
In the meadow steppe, the EST, vegetation type, soil type,

In the typical steppe, the vegetation type, EST, soil type,

~

(a) The trends of the suitability index in meadow grasslands; and (b) typical steppe.
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Research Progress

1. Crop monitoring
= Topsoil Characterization
= Crop Biophysical Parameters Retrieval
= Crop Yield Prediction
2, Pest and Diseases
= Pest (Locust and Grasshopper Forecasting )
= Diseases (Yellow Rust)

3. Products and Application
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(s Field data collection campaigns — Crop Disease esa

Data on crop (wheat and maize) areas affected by yellow rust have been collected by exploiting the
opportunity offered by the participation to another ESA funded project (AfrigCast).

Up to now two field campaigns have
been carried out in collaboration with
the University of Nairobi:

5 — 17 June 2023 & 9 — 18 July 2023

Parameter Crop Target Completed
Parcel mapping Maize 200 151
Wheat 0 128
Rice 200 252
Rust scoring Maize 100 51
Wheat 0 52
Rice 0 0
LAI Maize 50 51
Wheat 50 52
Rice 50 74
Chlorophyll Maize 0 51
Wheat 0 52
Rice 0 74
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For what concerns crop threats, the core of the system aiming at detecting yellow rust outbreaks in
maize and wheat crops, will be built on S2 and PRISMA satellite.

Several VIs (NDVI, SIPI, PRI, PSRI, MSR) computed by using multispectral and hyperspectral images
has been used to implement a Diseases Infection Index (DII).

Narok county, *

Objectives enya — 21/08/2022

Coupling ground data and remote
sensing data to quantitatively the
presence of yellow rust in wheat and
maize agricultural fields.

Research content

» Validation of the
indicators through
field data.

» Crop type maps and

multivariate indicators maps of yellow rust

required for early potential presence

detection of yellow rust. on wheat and maize




Yellow rust detection and monitoring

Narok county, Kenya — 12/06/2023
Disease infection index (mid-season because taken in the months of full growth of wheat and maize in Kenya)

and the red edge stress index are shown.
Scales range from to 100 % for DIl like probability of infection.
While for the red edge, higher than 50-60 there should be a correlation with the rust.

Results have not been validated yet. -
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1. Crop monitoring
= Topsoil Characterization
= Crop Biophysical Parameters Retrieval
= Crop Yield Prediction
2. Pest and Diseases
= Pest (Locust and Grasshopper Forecasting )
= Diseases (Yellow Rust)

3. Products and Application
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‘(27,,,,555 Products and Application

Based on the above achievements, we have successfully monitored the major breeding areas and migration paths of desert locust in
the Asia-Africa region from 2018 to 2023. We have also conducted remote sensing monitoring of disaster situations in key affected
countries and continuously updated the dynamics of their impact. This has provided vital information support for locust disaster

emergency response. Our analysis has revealed that Pakistan, Yemen, and countries in the Horn of Africa such as Somalia, Ethiopia,

and Kenya are among the most severely affected by desert locust.
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Results of Desert Locust Migration Paths and Disaster Remote Sensing Monitoring in the Asia-Africa Region from 2018 tg 2023




@,,,M Products and Applications

O Using MODIS, Sentinel, SDGSAT-1, and GF satellite data, we have conducted crop disease and pest monitoring and forecasting in
major grain-producing countries worldwide. Multiple disaster monitoring and assessment products have been released as of now.

O All reports and data have been adopted and globally published by the Food and Agriculture Organization (FAO) of the United

Nations and the Global Biodiversity Information Facility (GBIF), providing decision support for global joint prevention and control

of crop diseases and pests. We have received thank-you letters from multiple countries, including Pakistan, Somalia, and Iraq. Our

achievements have been adopted by the National Forestry and Grassland Administration, the Ministry of Agriculture and Rural

Affairs, and other relevant authorities.
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Example(s) of developed service product(s): crop early warnin% o

Indicator name Explanation

CCl CCl time series based on last 6 years of Sentinel-2 images (actually in production
phase)

Temperature anomalies time series computed from the time of the crop growth
starting season

Precipitation shortage cumulative value starting from one month in advance with
respect the crop growth starting season

SCUOLA DI INGEGNERIA
AEROSPAZIALE

SAPIENZA
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&iwer Crop early warning: medium resolution Cesa

crop affected (%)

[]0.0-10.0
10.0 - 25.0

7 [ 25.0 - 40.0

v A
5 B 40.0-50.0

Crop early warning based on NDVI Anomaly, Temperature
Anomaly and Precipitation Anomaly, date: 17 May 2021. The figure
refers to a low warning due to NDVIA (level of warning = 1).
Provinces shown in grey refers to low crop areas (less than 10%).

The service provides maps in geotiff format.

The files contain: an integer number comprised from 1 to 4
corresponding to the level of warning.

The maps are provided on an 8-days frequency with maximum
two days delay with respect the last day of the synthesis period.

The output files have the following characteristics:
- Geotiff format.

- Spatial resolution: 250 m. Reference system: WGS 84.
- 1 band.

- Frequency: 8 days

- Band meaning: level of warning. 4 levels of warning are
considered: 1 = low warning, occurs when only NDVI anomaly is
detected in the period, 2 = medium warning, occurs when NDVI
anomaly, accompanied by temperature anomaly, is detected in the
period, 3 = high warning occurs when NDVI anomaly,
accompanied by precipitation anomaly, is detected in the period, 4
= very-high warning occurs when temperature, precipitation and
NDVI anomalies are detected in the period.

-Band 1 range values: 0 — 4, bad value = -1, C SCUOLA DI INGEGNERIA

AEROSPAZIALE

SAPIENZA

UNIVERSITA DI ROMA
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