Remote Sensing Monitoring and Evaluation of Ecological Environment of Guangyuan City in the Mountain-Basin Transition Zone

Li Jinzhi¹, Wang Shuguo^{1,*}, Shen Qian²

1. Jiangsu Normal University, China; swang@jsnu.edu.cn

2. Aerospace Information Research Institute, Chinese Academy of Sciences, China

RSCC

·eesa

ABSTRACT

Limited research have been addressed on ecological monitoring in the transition zone between mountainous and basin areas, and relying on single factor alone is insufficient overall reflect the ecological to environment of an area. Therefore, in this study, utilizing five periods of Landsat the Remote Sensing data, satellite Ecological Index (RSEI) was used to quantitatively assess the ecological environment quality of Guangyuan City located in the mountain-basin transition zone over the past 22 years.

RESULTS

 Table 1 Cumulative contribution of principal component analysis of each phase

Year	2000	2007	2011	2017	2021
PC1	70.26%	91.88%	79.50%	87.52%	80.09%
PC2	97.35%	98.98%	97.77%	97.28%	95.48%
PC3	99.78%	99.94%	99.90%	99.87%	99.20%
PC4	100.00%	100.00%	100.00%	100.00%	100.00%

INTRODUCTION

Remarkable progress has been made in the monitoring of land surface ecological environment quality based on remote sensing. However, due to the complexity of terrain condition and eco-hydrological environments, remote sensing monitoring transition toward between zone mountainous basin areas is still and challenging, especially the insufficient explanatory power of using a single remotely sensed indicator or targeting a single surface variable, and thus an integrated quality assessment is needed to provide a comprehensive assessment of the quality of the entire ecological environment.

 Table 2 Single index and RSEI of each phase in the study area

Year		NDVI		WET		NDBSI		LST		DCEI
		Mean	Std	Mean	Std	Mean	Std	Mean	Std	KSEI
2	000	0.421	0.147	0.652	0.052	0.478	0.131	0.387	0.131	0.603
2	007	0.524	0.123	0.749	0.044	0.229	0.061	0.590	0.128	0.821
2	011	0.517	0.250	0.912	0.041	0.270	0.098	0.300	0.164	0.548
2	017	0.534	0.173	0.904	0.034	0.362	0.088	0.598	0.108	0.565
2	021	0.537	0.121	0.652	0.069	0.554	0.100	0.449	0.146	0.595
	Γ	NDVI	WET		NDBSI	LST		RSEI	Ecologica	I classes
2000		S S S S S S S S S S S S S S S S S S S			S A A A A A A A A A A A A A A A A A A A			S S		
2007		Josh Josh								NS S
2011		J.S.S.			S S S S			Sold and the second sec	S.	S

Fig.2 Spatial distribution of indicators and ecological classes in the study area

OBJECTIVE

- To select proper imagery to calculate the four main RSEI metrics.
- To quantitatively evaluate the state of ecological environment quality over the past 22 years through RSEI.
- To analyze spatial and temporal

CONCLUSIONS

• Temporally, the RSEI values in the study area for the years 2000, 2007, 2011, 2017, and 2021 were 0.603, 0.821, 0.548, 0.565, and 0.595, respectively, exhibiting a pattern of increasedecrease-increase, with an overall weak declining trend;

• Spatially, the study area was mainly

trends and drivers of ecological environmental quality of the study area.		(a) Location of Guangyuan city gical tudy (c) Detailed location of the study area Fig.1 Study area	classified as 'good' in 2000, 2011, and 2017; 'excellent' in 2007; and 'moderate' in 2021.
METHOD		DISCUSSION	MAJOR REFERENCES
		• Multi-temporal comparative analyses	[1] Xu Hanqiu. Remote sensing evaluation
RSEI = f(G, W, T, D)	G: NDVI	reveal ecological changes in the study area.	index of regional eco-environmental change
	W:WET	• The RSEI method is suitable for assessment in this study area.	[J]. China Environmental Science, 2013(5):9[2] Xu Hanqiu. Establishment and
	T: NDBSI	• The validation method of RSEI and the	application of urban remote sensing
	D: <i>LST</i>	quantitative measurement of error and uncertainty need to be further explored.	ecological index [J]. Acta Ecologica Sinica, 2013, 33(24): 7853-7862.