ESA-MOST Dragon Cooperation

2023 Dragon Symposium5

Project ID:59307

Temporal Dual-polarization SAR Crop Classification Based on Coherence Optimization

Yuming Du, Qiang Yin*

College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China 100029 ying@buct.edu.cn

Introduction

- The aim of this paper is to construct temporal coherence such that coherence and polarisation features are combined to improve the classification accuracy of the dual-polarization.
- The classification result of experiment shows that combining the extracted eigenvalues I1, I2 and temporal coherence can get better accuracy.

Methods

The overall process is shown below:

Experiment

The classification results of different polarization features were observed, then temporal coherence was added to the polarization features.

Table 1 Adding coherence to polarization features				
Features	Accuracy		Accuracy	
Н	48.68%	add 	69.29%	
Α	49.87%		69.44%	
alpha	46.25%	coherence	67.95%	
I 1	67.52%		81.38%	
12	56.91%		79.15%	

Next, temporal and polarization features were combined to select the better feature combination.

Table 2 Feature combination			
Feature combinations		Accuracy	
	H+A+alpha	51.95%	
H+A+alpha+I1+I2		87.15%	
	I1+I2+coherence	90.65%	
F	H+A+alpha+coherence	69.69%	
l1+l2		86.74%	

The classification accuracy of each crop in the optimal case is shown below:

Feature Combination

(time dimension and polarization dimension)

Random Forest Classification

- A total of 588,000 sample points were used to classify 12 crop types.
- The number of decision trees is 100, the random state is 42.

crop12 - 0.00 0.10 0.06 0.00</

Conclusions

- The combination of temporal coherence and eigenvalues is optimal classification feature, which result can reach about 90% in this experiment.
 - Comparing with traditional polarization features, added coherence for multi-crop classification all get better results. Temporal coherence is confirmed to be important for multi-crop time-series classification.