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Dragon 5 3" Year Results Reporting € esa

* Inform on the project’s objectives

* Detail the Copernicus Sentinels, ESA, Chinese and ESA Third Party Mission data utilised after
3 years (complete slide 4)

* Detail the in-situ data measurements and requirements

* Provide details on field data collection campaigns and periods in P.R. China or other study
areas

* Inform on the results after 3 years of activity

* Inform on the project’s schedule, planning & contribution of the partners for the following
year

* Report on the level and training of young scientists on the project achievements, including
plans for academic exchanges

* Report on the peer reviewed publications (nr. of papers, journal name and publication title)
after 3 years of activity



The main objective of this project to investigate glacier and frozen ground dynamics in the
Pan Third Pole (PTP) in an integrated Open Virtual Geographic Environment (OVGE) system

by the synergistic use of multi-mission remote sensing datasets, ground measurements

and by developing physical and/or empirical models.

1, Develop algorithms and methods that employing new generation of European, Chinese
and TPM satellites

2, Modify and develop physical and/or empirical models that employ satellite data and
Forecasting future fate of the glaciers and frozen ground in the PTP.

3, Evaluating quality of earth observation data from ESA, China and TPM.



®: Glacier velocity at Karakoram derived by S2@esa
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During Oct 2017 to Sep 2021, plenty of surged glaciers
start and/or end their surging phases. Rimo south
glacier experienced a full surging phase during our
study period and last for about two years, the
maximum speed exceeded 9m/day. Several other
glaciers are also be identified as surge type.
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Two types of surging glaciers were identified. The first type exhibited a short
surging phase of just one or two years without seasonal variation, such as Rimo's
southern tributary. The second type shows glacier front that advances and exhibits
much higher summer end speeds than during stagnation, such as Gando at Pamir.
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®w: Permafrost dynamic at Beiluhe, QTP Eesa
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®dncidence angle normalization of S-1.  {eesa

Ascending and descending images obtained We introduced an algorithm that presumes that backscatter
within 24 hours. coefficient (in dB)differences is linear to incidence angle
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Coefficient: depends on surface feature, which is
modelled lon, lat, height and acquisition dates.
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5 sites at
Greenland ice
sheet for
model training
and evaluation.

(c) HV unnormalized (d) HV normalized () } g”

V) ;
2020-01-11 ~ 2020-01-16 2020-04-16 ~ 2020-04-21 2020-07-09 ~2020-07-14 2020-10-13 ~ 2020-10-18

SAR images normalized to a certain incidence _ _
Ref to: Chen, X,, Li, G., Chen, Z., Ju, Q., & Cheng, X. (2022). Incidence

Angle Normalization of Dual-Polarized Sentinel-1 Backscatter Data on
Greenland Ice Sheet. Remote Sensing, 14(21), 5534.

angle can better served for melting detection.
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Method: 6-day repeat S1 images are employed for detecting the surface melting, referring
to AWS sites temperature.
Found: The wet snow radar zone shows clear backscatter coefficients decreasing during the
melting seasons, but the bare ice radar zone behaves more complexly during the melting

Sedson
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Ref to: Li, G., Chen, X., Lin, H., Hooper, A., Chen, Z., & Cheng, X. (2023).

Glacier melt detection at different sites of Greenland ice sheet using dual-
polarized Sentinel-1 images. Geo-spatial Information Science, 1-16.




msccSea ice motion detection using S-1 feature tracking@esa
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Feature detection Feature detection
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|
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working flow of derive sea ice motion
vector with Sentinel-1 Imagery

Ref to:1, @Bk, =NI, £F, ¥1F, G2 ETIHETET
AL A9 X B Sentinel- 1 LR IRBUB K 2% K2 E L 33 [)/0L].
ERSAHR, 2022, 0.DOI: 10.11834/jrs.20222238.

2, Chaoyue Li; Gang Li*, Zhuogi Chen, Xue Wang, and
Xiao Cheng. Matching Vector Filtering Methods For
Sea Ice Motion Detection Using SAR Imagery Feature
Tracking. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 2022, 15:
6197-6202.
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Daily sea ice motion derived by
Sentinel-1 in Oct,2019



Why combining S1 and S2 for glacier velocity?
Optical
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Study site,
Petermann @ GrlS

After removing the gross errors, the equation
can be rank deficit. But after solving within
connected component, there will be no such
problem.



@/pgcc Glacier motion detected combined by S1 & S2 @esa

Before correction After correction
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Here we regard the region
<40m/year as stable area

on ice sheet, and presume
its velocity does not change.
The mosaicking errors are
evaluated and removed

from the offset-tracking Sub-pixel mosaic error results in jumps in the
output. offset-tracking outputs




e Glacier motion detected combined by S1 & S2 esa
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Ref to: Gang Li; Yanting Mao*; Xiaoman Feng; Zhuoqi Chen; Zhibin Yang; Xiao Cheng, Monitoring ice
flow velocity of Petermann glacier combined with Sentinel-1 and -2 imagery. International Journal of
Applied Earth Observation and Geoinformation, 2023, 121: 103378.



®.: Glacier motion detection with S1 InSAR esa

Benefitted by 6-day repeat cycle of S1, coherence is not a big issue for INSAR applying on ice sheet. But still
other issues to address, including (not limited to) phase unwrapping, TOPS induced phase jump between
adjacent burst.

Object:

To get a wrapped <(@§

interferogram
with lower phase
gradient for a
easy phase
unwrapping

Original D-InSAR, Phase estimated
with slant range InSAR,
offset-tracking, low gradient, easy to
high gradient unwrap




. Glacier motion detection with S1 InSAR esa
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& Glacier motion detection with S1 InSAR @esa

@
Aﬁaramp = 21t fpc(Amotion T Amis_err)

In most studies, motion in azimuth direction
does not required to be considered as
2pi=130cm deformation.

But glacier motion in polar region is another
story. Here historic monthly or annual flow rates
is employed.
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Phase gradient at burst edge has been effectively
reduced if considering the azimuth motion.
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hn gl o '_0'1 ; Py 0y 1 0 1 EEBefore refinement Ref to: Xiaoman Feng; Zhuoqi Chen; Gang Li*; Qi Ju;

W After refinement 7hihing Yang; Xiao Cheng. Improving the capability
of D-InSAR combined with offset-tracking for
monitoring glacier velocity. Remote Sensing of
(azimuth) velocity fields Environment, 2023, 285: 113394,

Interferogram [Radian]| Coregistration error in azimuth [m] Gradient [radian]

Evaluation the azimuth co-registration error basing on a mean




EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for
no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert “ftp”

ESA /Copernicus Missions ESA Third Party Missions m Chinese EO data m

1. Sentinel-1 >8000 1. nan 1. nan
2. Sentinel-2 >1000 2. 2.
3. Sentinel-3 20 3. 3.
4. 4. 4.
5. 5. 5.
6. 6. 6.
Total: >9000 Total: Total:

Issues: Issues: Issues:



@mgcc Chinese Young scientists contributions in Dragon 5 @esa

Poster title Contribution including period of
research
Yanting Mao Sun Yat-sen Monitoring ice flow velocity  Develop the method of combining S1
University of Petermann glacier and S2 offset-tracking results to derive
combined with Sentinel-1 velocity fields for polar glaciers.
and -2 imagery 2021.9 - now
Zhibin Yang Sun Yat-sen Precision comparison of Evaluate different algorithms in terms of
University different offset-tracking offset-tracking precision at sub-pixel
methods at sub-pixel level level. Developing the correction method
for glacier velocity study for the fast running software.

2021.9 - now



