
Abstract

Coastal regions have dense populations, buildings, and 

infrastructures, and are vulnerable to natural disasters. 

Frequent natural disasters will cause huge economic losses 

and human casualties. Shanghai is a coastal megacity located 

in the low-elevation coastal zones of the Yangtze River Delta. 

The city is frequently affected by typhoons and storm surges. 

Besides, The geological foundation of the city consists of soft 

alluvial deposits, including clay, silt, and sand. Due to its 

geological conditions, Shanghai is vulnerable to ground 

subsidence, flooding, and other geohazards.

In order to prevent, resist, and reduce the impact of disasters, 

this study assesses the regional disaster reduction risk (DRR) 

capacity of a district of Shanghai with a Technique for Order 

Preference by Similarity to an Ideal Solution (TOPSIS) and 

established a machine learning aided evaluation models. We 

also retrieved long-term and recent ground deformation of the 

coastal areas of Shanghai with Small Baseline Subset (SBAS) 

technology and multi-sensor Synthetic Aperture Radar image 

time series. We also simulate the possible flood inundation 

extent under different scenarios based on the LISFLOOD-FP 

simulation model in coastal regions. For towns with weak 

DRR capacity, we analyze the sensitivity of evaluation 

indicators to explore key indicators that affect the 

improvement of DRR capacity. Finally, we proposed optimal 

strategies that could improve DRR capacity based on the 

assessment results of DRR capacity and regional disaster 

characteristics.
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1. Introduction
As the economic center of China, Shanghai is a mega-city 

with a permanent population of more than 24 million. There 

are various kinds of buildings and major infrastructures. As a 

coastal city, it is vulnerable to typhoons, rainstorms, 

waterlogging, storm surges, and red tide.  In addition, 

Shanghai is located at the mouth of the Yangtze River, formed 

by alluvial sediment. As a result, geological disasters such as 

land subsidence are also prone to occur with rapid economic 

development and frequent land reclamation activities. 

Therefore, it is of great significance to carry out an 

assessment of natural disaster mitigation capability, and then 

to improve natural disaster mitigation capability. Based on 

this, the government can make disaster-prevention strategies 

to minimize casualties and property damage when disaster 

strikes. Some scholars have also researched the assessment of 

natural disaster risk reduction capacity. The index system of 

natural disaster risk reduction capacity in this work is shown 

in Table 1.
Table1. The index system of natural disaster risk reduction capacity

2. Method
TOPSIS is a common intra-group comprehensive evaluation 

method, which can make full use of the information of the 

original data, and its results can accurately reflect the gap 

between the evaluation schemes. This method has no strict 

limit on data distribution and sample content and is easy to 

calculate. The basic calculation process is as follows:

Suppose there are n evaluation objects, and each object has m 

indicators

1. Construct the normalized initial matrix.

2. Determine the best solution and the worst solution.

3. Calculate the distance between each evaluation object and 

the best and worst scheme.

4. Calculate and sort the closeness degree between each 

evaluation object and the optimal scheme.

Bagging, also known as bootstrap aggregation, is the 

ensemble learning method that is commonly used to reduce 

variance within a noisy dataset. In bagging, a random sample 

of data in a training set is selected with replacement, meaning 

that the individual data points can be chosen more than once.  

After several data samples are generated, these weak models 

are then trained independently, and depending on the type of 

task—regression or classification, for example, the average or 

majority of those predictions yield a more accurate estimate.

bagging algorithm has three basic steps:

1. Bootstrapping

2. Parallel training

3. Aggregation

Random forest is a commonly used machine learning 

algorithm trademarked by Leo Breiman and Adele Cutler, 

which combines the output of multiple decision trees to reach 

a single result. Its ease of use and flexibility have fueled its 

adoption, as it handles both classification and regression 

problems.

Random forest algorithms have three main hyperparameters, 

which need to be set before training. These include node size, 

the number of trees, and the number of features sampled. 

From there, the random forest classifier can be used to solve 

regression or classification problems.

Gradient boosting is a machine learning technique used in 

regression and classification tasks, among others. It gives a 

prediction model in the form of an ensemble of weak 

prediction models, i.e., models that make very few 

assumptions about the data, which are typically simple 

decision trees. When a decision tree is the weak learner, the 

resulting algorithm is called a gradient-boosted trees; it 

usually outperforms random forest. A gradient-boosted trees 

model is built in a stage-wise fashion as in other boosting 

methods, but it generalizes the other methods by allowing 

optimization of an arbitrary differentiable loss function.

Small Baseline Subset Algorithm (SBAS) is one of the well-

known MT-InSAR algorithms to retrieve ground deformation 

time series with high accuracy. In this study, the SBAS 

algorithm is applied for the generation of the line-of-sight 

(LOS)-projected ground deformation time series and 

deformation velocity in Shanghai. To mitigate the 

decorrelation effects that corrupt the interferograms, in SBAS 

processing interferometric pairs characterized by short 

temporal and spatial baselines, are selected for retrieving 

ground deformation time series. The interferograms with short 

baselines are arranged in a few subsets and combined with the 

singular value decomposition (SVD) method. The residual 

topographic and atmospheric phases are estimated and filtered 

out from the phases of interferograms. The differential 

interferograms with deformation phases are unwrapped by 

applying the minimum cost flow algorithm. The residual 

topographic artifacts are recovered and compensated. 

Atmospheric phase artifacts are also extracted and filtered out. 

The SBAS-derived products, i.e., the mean deformation 

velocity maps and the relevant displacement time series, are 

geocoded to a common spatial grid. 

3. Results

Figure 1. Hierarchy diagram of disaster risk reduction capacity in Shanghai. 

(a) represents the DRR capacity of the town (street) and (b) represents the 

DRR capacity of the community (village).

The DRR capacity assessment data will constantly change 

with the use and input of human, material, and financial 

resources. Therefore, machine learning was introduced into 

the assessmentof DRR capacity of all streets and towns based 

on the simulation data in Shanghai. It is found that the results 

evaluated by Bagging and Random Forest are mostly 

consistent with the results evaluated by TOPSIS and the 

inconsistent results float between adjacent grades.

Figure2. Variation diagram of the index of disaster risk reduction capacity of 

the community (village) in Xian Xia new village Street

Based on the assessment results of DRR capacity, we focused 

on the streets where DRR capacity of the town (street) and 

community (village) are weak. Using a simple variable 

method, sensitivity analysis is made on the indicators 

participating in the assessment to explore the key indicators 

influencing DRR capacity.

Figure2. Map of vertical annual average ground deformation velocity in 

Shanghai.

Figure3. Simulated inundation scenarios subject to different seawall-failure 

coastal flood scenarios (1 km/seg) when the water level is the maximum tide 

level in Jinshan District

4. Conclusion

In this study, considering the characteristics of regional 

disasters in Shanghai, strategies to improve DRR capacity are 

proposed for areas with weak DRR capacity, possible 

flooding, and land subsidence, providing disaster risk 

information and scientific decision-making basis for 

improving comprehensive regional DRR capacity.
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