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1. Abtract

The remote sensing community has shown increas-
ingly interest in self-supervised learning for its ability
to learn representations without labeled data. These
representations can be easily adapted to downstream
tasks through pre-training and fine-tuning. Recently,
Masked Autoencoders (MAE) achieve better semantic
representation by masking out a significant portion of
the input image. However, the original design of MAE
for RGB natural images may not be optimal for remote
sensing (RS) images, which exhibit considerable varia-
tion between modalities like SAR and optical. To ad-
dress this, we propose a masking methods that en-
hances feature extraction. After fine-tuning, proposed
model outperforms state-of-the-art contrastive and
MAE-based models on BigEarthNet-MM classification
and significantly reduces input data volume by at least

50%, resulting in a more efficient model. Generaliza-
tion experiments show a significant F1-score improve-

ment when applied to the SEN12MS dataset, which has
diverse data distributions.

2. Introduction
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Figure1: While the RGB channels of natural images tend to exhibit similar infor-
mation, there often exist significant disparities between RS images of diverse
modalities, such as SAR and optical data.

As shown in Figure 1(a), for a 3-channel natural image,
there is usually little difference among the information
in the channels. However, as shown in Figure 1(b), RS
images often exhibit substantial variation across dif-
ferent modalities. Optical images offer detailed infor-
mation but degrade in challenging weather and light-

ing conditions, while SAR provides complementary in-
formation but faces noise interference. While research
on single-modality data is well-established, it is chal-
lenging but meaningful to study the correlation along
the modalities to leverage complementary informa-
tion between modalities.

3. Methods

Figure 2 illustrates the overall architecture, which in-
troduces a novel masking approach distinct from MAE.
The upper section represents pre-training, while the
lower section depicts fine-tuning. In pre-training, a
pair of SAR [ and optical image I, of the same location
are first concatenated along channel dimension as in-
put. Subsequently, a large portion of the patches will
be masked out by our proposed Module.
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Figure 2: Overall architecture of proposed method. When fine-tuning, the pre-
trained encoder is utilized to encode the entire image, extracting features that
can be applied to various downstream applications.
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The Mask Module is designed to enhance the ability to
extract complementary modality information and in-
crease the scenarios encountered by the mask. Careful
design is needed to prevent pre-training from becom-
ing a simple interpolation reconstruction job.

4. Results
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Figure 3: Fine-tuned results on BigearthNet-MM validation set. The evaluation
metric is mAP. S1 represents SAR, S2 represents optical image, and + represent
the concatenation.

According to Figure 3, proposed method demon-
strates strong multi-modality learning, yielding im-
proved S1+S2 performance over S2 alone and surpass-
ing SatViT overall. The relatively slight improvement
of S1+52 compared to S2, is due to the model’s already
high performance level, making furtherenhancements

challenging.
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Figure 4: Fine-tuned results on the single-modality BigearthNet-MM validation
set using mAP as the evaluation metric. STrepresents SAR, S2 represents the op-
tical image, MM represents multi-modality. The evaluation metric is mAP.

Moreover, proposed method demonstrated superior
performance in single-modality settings in Figure 4.
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Figure 5: Fine-tuned results on the SEN12MS validation set. The evaluation
metrics are the weighted Precision, Recall, and F1-score.

As indicated in Figure 5, the proposed model excels
in classification, even with varied data distribution,
despite ResNet50 & SwinSSLs direct pre-training on
SEN12MS, which should theoretically benefit them.

5. Discussion
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Figure 6: Proposed method outperforms other self-supervised pre-trained
models when applied to small-scale data. Furthermore, it shows significantly
better performance compared to models that underwent supervised training
from scratch on small datasets of BigkarthNet-MM.

We also assessed self-supervised pre-trained and su-
pervised methods on limited datasets with label ratios

of 0.01, 0.1, 0.5, and 1. These ratios reflect the labeled
data percentage used during fine-tuning.

6. Conclusions

We present a new self-supervised model that
employs to enhance the extraction of improved
correlations between SAR and optical images.
Our model reduces input data by 50%, achiev-
ing top performance and semantically rich rep-
resentations. It generalizes well, even with lim-
ited data. Furthermore, it’s significant that the
model enhances performance by leveraging di-
verse modalities in scenarios like emergencies
with only SAR data and it’s versatile and applica-
ble in both single and multi-modality settings.

1. Forthcoming Research

Due to computational resource constraints, we were
unable to explore the optimal mask ratio, indicating
potential for further improvement in the future.
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