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Background and objectives

• Agriculture production systems are facing

unprecedented challenges.

• EO is already used to estimate land surface variables, but

the step to a full process understanding of agricultural

systems has not yet been taken.
The overall objective:

To carry out agro-ecosystem health diagnosis and to investigate agricultural

processes based on various in situ and EO data, allowing to improve the efficiency in

the use of natural resources to facilitate sustainable agriculture development.



Remote sensing (multi-sensor and 
multi-scale)



Scientific approach and goals

•Development and improvement of
information products from remote
sensing
•Validation of information products using
in situ data
•Integration of information products
using data assimilation methods and
physically-based models

ÞProcess chain from basic data
analysis to application

Remote 
Sensing

In situ 
data

Modeling



Adopted approach and workflow

The proposed workflow to support sustainable agricultural production within

Dragon 5 project:



Mid-term results

2.1 Crop identification

2.2 Observing the crop 
status

2.3 Observing the 
hydrological states

2.4 Carbon budgets

European cases Chinese cases

1. UAV LiDAR & Multispectral LAI

2. UAV-based ET estimation
3. C&L band Soil Moisture estimation
4. Coupled modelling of soil moisture
5. RS soil moisture products comparison
6. Agricultural water stress detection

7. PlanetSCOPE & Sentinel-2 GPP  

2. UAV & Satellite 
Hyperspectral LAI

3. PLMR Soil Moisture 
estimation
4. Drought events monitoring

1. Fusion of PolSAR & pan. 
images

5. Soil organic carbon
6. Large scale NEP



Methods:

• Use LiDAR gap fraction to 
estimate canopy density 

• Similar method to hemispherical
cameras used in forestry

• Modified Beer-Lambert 
equation to relate laser rate
of penetration to LAI

UAV LiDAR & Multispectral LAI 1 

Ref: Bates et al. (2021; 2022b) 



• UAV LiDAR LAI well correlated with multispectral 
methods (R =  0.39–0.66) and for one time 
destructive measurements (R2 = 0.89, RMSE = 
0.89)

• Approach on PAI LiDAR and GAI multispectral 
methods allowed for hybrid estimation of Brown
Area Index (BAI) 

UAV LiDAR & Multispectral LAI 2

Results:

Ref: Bates et al. (2021; 2022b) 



Methods for ET multi-Sensor 

• Improve spatial resolution of ET for  
improved irrigation planning

• Use of UAV thermal sensor for Canopy 
and soil temperatures 

• Multispectral LAI and LIDAR height for 
canopy and soil resistance parameters.

UAV-based ET estimation 1

Thermal IR – Surface Temp.

Multispectral – Leafe Area Index

LiDAR – Canopy Height

Ref: Bates et al. (2021; 2022b) 



UAV-based ET estimation 2

Brief discussion & Conclusions
Results 

Ref: Bates et al. (2021; 2022b) 



Results

• The method has found good agreement between
the latent heat fluxes of UAS TSEB and ground-
based eddy covariance (EC) estimates with an
RMSE of 11.83 W/m2 based on three
observations earlier in the growing season.

• More complete and frequent depictions of ET
allow for more responsive and precise irrigation
planning that can improve water use efficiency.

UAV-based ET estimation 2

Ref: Bates et al. (2021; 2022b) 



Background

• Using a short-term change detection method, changes between SAR observations mostly 
related to changes in soil moisture

• C-band Sentinel-1 timeseries offers temporal dense recordings but is prone to vegetational 
influence

• L-band ALOS-2 timeseries is not as prone to vegetational influence but has only scattered 
recordings

Objective
• How to combine both timeseries to have vegetational insensitivity of ALOS-2 L-band with high 

temporal resolution of Sentinel-1 C-band?

C&L band Soil Moisture estimation 1

Ref: Mengen et al. (2023) 



Method

C&L band Soil Moisture estimation 2

• Changes in the L-band are less influenced by vegetation and serve as "reference points“
• Between observations in the L-band, the time series in the C-band are scaled to match the 

observed scenes in the L-band
• Soil texture is used for inverting soil moisture to dielectric constant

Ref: Mengen et al. (2023) 



C&L band Soil Moisture estimation 3

Barley Wheat

Sugar Beet Potato

• Soil moisture estimation from Alos-2 matches in-situ 
measured soil moisture better in absolute terms, but 
sparse temporal resolution leads to lack of correlation

• Soil moisture estimation from Sentinel-1 has higher 
correlation but also higher absolute error 

• Soil moisture estimation from both C- and L-band 
combines higher correlation and lower absolute error 

Ref: Mengen et al. (2023) 

Results



C&L band Soil Moisture estimation 4

Results

• Significant improvement in linear, upright crops 
(wheat, barley).

• For taproot or tuber crops such as potatoes and 
sugar beets, the change in surface roughness due 
to maturity and harvest becomes a challenge for 
combined C- and L-band change detection 
methods.

• Apply combined C- and L-band change-
detection method for stationary surface 
roughness conditions within L-band wavelength 
domain -> between seeding and harvest

Ref: Mengen et al. (2023) 

White areas excluded==> water, urban and Forest
Blue ==> wet
Orange ==> dry
Resolution==> 200 m and 2 days



Methods

Coupled modeling of soil moisture 1

• Coupled land surface-subsurface model (CLM-ParFlow).

• 500m resolution

• Meteorological forcing: COSMO-REA6 2017-8 (normal & dry year)

• Soil hydraulic properties: Rosetta Pedo-transfer functions.

• Soil texture: FAO/UNESCO Soil Map (Klimaatlas NRW)

• Water retention and relative permeability curves: the van Genuchten
TSMP

O
AS

IS
3

From Shrestha et al. 2014

Study area (150 km2) The plant functional types 
(PFTs): MODIS land cover data

Ref: Moradi et al. (202X) 



Coupled modeling of soil moisture 2

• dj

Results:
Simulated vs Measured Soil Moisture ...

C
ro

ss
-e

va
lu

at
io

n 
of

Si
m

ul
at

ed
 S

M

Cosmic-ray neutron sensor 
(CRNS) (13 stations)

Soil Moisture 
Active/Passive (SMAP)

Synthetic Aperture Radar 
(SAR)-Sentinel-1

Variation in the simulated vs SMAP and Sentinel-1 extracted SM of the top 5cm of the soil and 
the precipitation at the study area for 2017-8 

Mean Monthly bias RMSE ubRMSE r
CRNS -0.02 0.15 0.11 0.38
SMAP* 0.04 0.01 0.05 0.48

Sentinel1 0.06 0.01 0.07 0.45
* Resolution difference is not considered : 0.5 km vs 9

Ref: Moradi et al. (202X) 



Coupled modeling of soil moisture 3

Results & Outlook

• The model is able to capture the SM values and dynamics to some extent.

• Relatively low systematic bias (ubRMSE)

• SM dynamics are best captured when precipitation is more steady

• Relatively low correlation values at 500m resolution

Next:

• Data assimilation towards improving the simulation results using high resolution
satellite data.

SM from Sentinel-1 for 
September 2017

Ref: Moradi et al. (202X) 



Methods:
• The analysis was conducted at the TERENO-Rur site network in Germany for years from 2016 to 

2018.
• The in-situ soil moisture, from the ISMN (International Soil Moisture Network) database, served as 

the benchmark.
• To ensure consistency, the hourly volumetric soil moisture (in-situ) at a depth of 5cm were averaged to 

daily. 
Different preprocessing approaches: a) smoothing, b) scaling, c) gap filling

Remotely sensed soil moisture data:

RS soil moisture products comparison 1

DATA Detail Processing 
level

Bands Latency Spatial 
resolution

Temporal 
resolution

Cover
age

SMAP Soil Moisture Active 
Passive

L3 L-band 31 March 2015 
to present

36*36 km Daily Global

AMSR-E Advanced microwave 
scanning radiometer 
– Earth observation 
system 

L3 C, X-band 2002-06-19 to 
2011-10-04

25*25 km Daily Global

AMSR-2 Advanced microwave 
scanning radiometer -
2

L3 C, X-band 2012-03-07 to 
till date

25*25 km Daily Global

SMOS Soil moisture ocean 
salinity

L3 L band 2015-05-06 to 
2022-07-31

25*25 km Daily Global

ESA CCI Climate Change 
Initiative 

L3 1978 to 2021 25*25 km Daily Global

ASCAT Advanced 
Scatterometer

V7 C band 2007-01-01 to 
till date

12.5*12.5 km Daily Global

Ref: Sivaprasad et al. (202X) 



RS soil moisture products comparison 2

Pearson's R Spearman's rho Kendall's tau RMSE Bias ubRMSE

SMAP 0.714 0.723 0.528 0.06 0.007 0.06

ESA CCI 0.831 0.837 0.635 0.091 0.058 0.069

AMSR2_SAVGOL 0.669 0.658 0.456 0.08↓ 0.048↓ 0.064

SMOS_SAVGOL 0.55 0.589 0.417 0.092 -0.07 0.06

ASCAT_SAVGOL 0.406 0.398 0.268 0.107 0.068 0.083

Scaled_AMSR2 0.669 0.658 0.456 0.065↓ 0.009↓ 0.064

• SMAP shows the best performance across
evaluation metrics followed by ESA-CCI.

• Smoothing improved the performance of
AMSR2

• Scaled AMSR2 data effectively captures
the dynamics of SMAP.

• SMAP and Scaled-AMSR2 also
demonstrate relatively strong
performance.

AGRICULTURAL SITE (GEVENICH)Smoothing and Scaling:

Ref: Sivaprasad et al. (202X) 



Results:
Gap filling
• Compared to all data, SMAP performs better. But for long term data assimilation, better to have long term

continuous dataset.
• AMSR-E/AMSR-2 data is available from 2002 to 2022, but with a gap of 7 months.
• Random forest ML is used here to fill the gap between AMSR-E and AMSR-2 data.
• Ancillary data: ASCAT, SMOS, soil texture, day of the year were used as the inputs to predict.
• Verification was done with the AMSR2 and In-situ data.

Pearson's R 0.841

Spearman's rho 0.811

Kendall's tau 0.629
RMSE 0.039
Bias -0.016

ubRMSE 0.035

RS soil moisture products comparison 5

Ref: Sivaprasad et al. (202X) 



RS soil moisture products comparison 6

Ø We found that SMAP generally outperformed other satellite products in representing soil moisture.

Ø SMAP fell short in meeting the long-term time series requirements. We explored AMSR-E/2 as an alternative with a

longer time series but limited accuracy.

Ø Through the application of the Savitzky-Golay filter and scaling with respect to SMAP, we achieved improved

performance across all land covers. Additionally, employing the Random Forest algorithm for gap filling showed

promising results.

Results:

Ref: Sivaprasad et al. (202X) 



Methods:
• Accuracy assessment of daily SEVIRI-ETa and SEVIRI-ET0 products (2004-2018) against in situ 

measurements at 54 eddy covariance sites

• Accuracy separation into temporal (intra-annual and inter-annual) and spatial (ecosystem, and climate 
zones) dimensions

• Water stress levels detection for the entire Europe for 2004-2018 at 3 km resolution

Agricultural water stress detection 1

𝐸𝑆𝐼 =
𝐸𝑇𝑎
𝐸𝑇0
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ETa: Actual ET [mm/day]
ET0: Reference ET [mm/day]
ESI: Evaporative Stress Index [-]
ESIA: Evaporative Stress Index Anomalies [-]
d: daily time step,
y: year, i,j: grid location
nc: number of observations,
n: value of observation
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r: is the linear correlation between two dataset,
𝜎s: the standard deviation in satellite,
𝜎g: the standard deviation in in situ,
µs: the satellite mean,
µg: the ground mean.
The ratios 𝜎s/ 𝜎gand µs/ µgdescribe the
variability error and the bias term

Ref: Bayat et al. (2022) 



Agricultural water stress detection 2

Temporal (Intra/Inter-annual)                 Spatial (Ecosystem)                Spatial (Climate)

Ref: Bayat et al. (Revised for RSE) 

Results:



Agricultural water stress detection 3

Results:

Water stress maps

ü 3-5 km spatial resolution

ü Monthly temporal resolution

ü 15 years (2004-2018)

Ref: Bayat et al. (2022) 



Agricultural water stress detection 4

Results:

• The direct comparison of in situ ET with their corresponding SEVIRI-ET products resulted in a
fair agreement in spatial dimensions albeit with expected inter-site variability.

• For SEVIRI-ET, intra-annual accuracy was low from January to March, increased in the mid-
year, and then began to decline from November to December.

• The water stress workflow based on Evaporative Stress Index (ESI) anomalies can be used in
operational applications to quantify various water stress levels.

• The results from this study highlight the value, support the potentials, and unlock the full
capacity of SEVIRI-ET products and the VLab platform for agricultural water stress detection at
larger domains.

Ref: Bayat et al. (2022) 



Methods:

PlanetSCOPE & Sentinel-2 GPP  1

Inversion of 
radiative 
transfer 
model

LAI

Light use 
efficiency model 
calibration and 
implementation

Met condition 
(Ta, VPD)

𝐆𝐏𝐏 = 𝜺 ×𝐀𝐏𝐀𝐑 = 𝜺 × 𝐟𝐀𝐏𝐀𝐑 ×𝐏𝐀𝐑

Light use efficiency (𝜀) is calculated as:  
𝜀 = 𝜀$%&×Attenuation scalars = 𝜀$%& × 𝑇' ×𝑊'

Attenuation scalars account for environmental stress 
on maximal light use efficiency (𝜀$%&) 

fAPAR from LAI using Beer's Law approach:
fAPAR = 1 − e()*)×-./

Ref: Raj et al. (202X) 



PlanetSCOPE & Sentinel-2 GPP  2

Mean retrieved LAI from Sentinel 2 (10m)  and 
GPP from the sowing (26 April 2019) to the 
harvesting (15 October 2019) date of the potato 
crop field at the Selhausen ICOS (Integrated 
Carbon Observation System) site, Germany. 

LAI retrieval from PlanetScope data (3m) for two winter triticale phenological stage (end of 
stem elongation and end of flowering phase) in 2020 and 2021 at Löwenberger Land, 
Grossmutz, Germany.

Ref: Raj et al. (202X) 

Results:



PlanetSCOPE & Sentinel-2 GPP  3

Results:

• The growth development of potato and winter triticale was apparently reflected by the 
retrieved LAI.

• LAI retrieved from the Sentinel-2 can serve as the quality-assured estimate of crop GPP.

• LAI retrieved from PlanetScope can capture the spatial heterogeneity in LAI that results 
from the spatial variation in soil water holding capacity. 

Ref: Raj et al. (202X) 



• To take full advantage of high spatial resolution of panchromatic

images and polarimetric synthetic aperture radar (PolSAR) data

• A novel dual-domain data fusion method is explored by combining

spherically invariant random vector (SIRV) model with a novel

generalized adaptive linear combination approximation (GALCA)

technology

• Gaofen (GF)-2, 3 and Radarsat-2 data are used

Fusion of PolSAR & pan. images 1

Ref: Liu et al. (2022) 



PauliRGB of original PolSAR image

PauliRGB of fused PolSAR image

Results show that this can significantly improve spatial resolutions of 
PolSAR image while preserving polarimetric information.

Fusion of PolSAR & pan. images 2

Ref: Liu et al. (2022) 



Using UAV hyperspectral data to estimate LAI

• Spectral resolution of 4 nm in the range of 450-950 nm

• All bands were evaluated and the optimal bands were
selected based on multiple methods to construct new two-
band vegetation indexes

• Correlation between LAI and the proposed two-band
vegetation indexes was compared and analyzed, which

provide the confidence of further developing LAI estimation
approaches based on the SVR, PLSR and RFR

• The proposed vegetation indices can be easily understood
and physically explained, as well as with strong applicability
and low computational cost
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UAV & Satellite Hyperspectral LAI 1

Ref: Kong et al. (2022) 



LAI estimation by a 

hybrid inversion 

strategy based on 

PROBA-CHRIS data

Simulated 
CHRIS spectra

Simulated 
crop LAI 
values

PCR/PLS  analysis or VIs 
calculation

PCs or VIs of 
simulated 

CHRIS

CHRIS remote 
sensing image

PCs or VIs 
thematics of 
CHRIS image

Pretreatments  and 
object area extraction

LAI Inversion model for CHRIS Crop LAI 
thematic map

Validation report of 
LAI inversion model

Feature extraction of 
CHRIS image

Crop 
parameter 

dataset

DataProcess Report

Field LAI  
measurements

ROSAIL Model 
simulated experiment

Field observation 
experiment

Legend: 

Simulated 
dataset

Simulated 
data

Measured 
data

Flow chart of vegetation LAI remote sensing 
estimation based on integrated inversion strategy

UAV & Satellite Hyperspectral LAI 2

Ref: Liang et al. (2020,2021) 



Spatial distribution map of the crop LAI predicted from the CHRIS
remote sensing image and various RFR models in Sentinel-3
Experiment: (a) Specific2_PLS_RFR, (b) Specific1_PLS_RFR, (c)
Generic_PLS_RFR , (d) Specific2 _OSAVI_RFR.

Ground-measured LAI versus the LAI estimated from the RFR
inversion model in the Sentinel-3 Experiment: (a)
Specific2_PLS_RFR, (b) Specific1_PLS_RFR, (c)
Generic1_PLS_RFR, and (d) Specific2 _OSAVI_RFR.

Simulated 
CHRIS 
spectra

CHRIS image of 
study area

UAV & Satellite Hyperspectral LAI 3

Ref: Liang et al. (2020,2021) 



PLMR Soil Moisture estimation

• A Bayesian probabilistic inversion algorithm can simultaneously
estimate SM, surface roughness, and vegetation optical depth
data and, to quantify the uncertainty in the inversion.

• Five comprehensive metrics were newly introduced into
Bayesian posterior distributions of SM retrievals to indicate the
performance of a retrieval algorithm

• Different combinations of polarizations and incidence angles of
airborne polarimetric L-band multibeam radiometer (PLMR)
observations as retrieval attempts were performed and the
retrieved results were validated against multiscale ground-based
measurements.

Ref: Ma et al. (2022) 



Analysis of drought occurrence frequency and change trend in China using long time series VCI, TVDI index
products and meteorological data

Drought events monitoring 1

Ref: Liang et al. (2021) 



Slope trend of the average VCI in spring from 1981-
2015 in China

Mann-Kendall mutation analysis results of VCI time 
series for various regions of China

Wavelet time series analysis of spring VCI in China, 1981-2015.

Spring VCI wavelet time series analysis maps for the southern (A), 
northern (B), northwestern (C) and Qinghai-Tibet (D) regions of 
China.

Drought events monitoring 2

Ref: Liang et al. (2021) 



Mapping the soil organic carbon (SOC) changes in China from 1982 to 2019

Soil data
4695 soil sites
Sampled 1980s-2010s

Covariates
Multi-source
Represent key controls
Remote sensing provides temporal products 

Spatial modeling 
A machine learning-based statistical model Cubist

Model projection
Updating dynamic variables in the model

Soil organic carbon 1

Ref: Yang et al. (2022) 



Soil organic carbon density dataset for China from 1982–2019

Soil organic carbon 2

Ref: Yang et al. (2022) 



Further, key driving factors to the SOC variations are analyzed.

Spatial pattern of the controls of the soil organic carbon density 
(SOCD) change in 1982 and 2019

• The annual SOC distribution at a depth of 0-
100 cm with 1 km spatial resolution between
1982 and 2019.

• The controlling factors included elements
representing temperature, precipitation,
vegetation, and human activities.

• The findings offer a unique view of the diverse
spatial patterns and controls of long-term SOC
changes in China and enables spatially explicit
assessments of soil carbon dynamics, which can
be beneficial to policy making in relation to
carbon offset activities.

Soil organic carbon 3

Ref: Yang et al. (2023) 



The observed NEP VS the estimated NEP based on the
CASA model. (a) εmax using vegetation classification;
(b) εmax of fixed value 0.389 (gC∙MJ−1)

Left: Average NEP
in summer of China
from 2001 to 2016

• NEP was estimated by coupling the optimized CASA model, the
geostatistical model of soil respiration, and the soil respiration-soil
heterotrophic respiration relationship.

• Results improved remarkably, with an increase of R2 from 0.411 to
0.774 and a decrease of RMSE from 21.425 gC�m-2�month-1 to 12.045
gC�m-2�month-1.

Large scale NEP 1

Ref: Liang et al. (2022) 



Spatiotemporal distribution of monthly NEP in 
Europe in 2014 

Annual variation chart of monthly 
average temperature and monthly 
average NDVI.

• Similarly, by optimizing the parameters optimum
temperature and εmax, the modified CASA model was
employed to obtain terrestrial ecosystem NPP and NEP over
Europe.

• The detailed trend of monthly changed NEP in each region
can be analyzed, while the overall trend was annually positive.

Large scale NEP 2

Ref: Qiu et al. (2023) 



3. Conclusion and outlook

• Systematic exploitation of multi-source and multi-scale remote sensing observations

through modeling can provide valuable opportunity to gain knowledge about

agroecosystem processes.

• Joint publication submitted to Geo-spatial Information Science (GSIS), Current status is

“Decision Pending” after 1st round of revision.

• Next, near-real-time estimation of essential variables to timely inform crop growth models

will be further developed.

• To combine the different variable types and strengthen the synergies from remote sensing

monitoring to modeling, agroecosystem functioning and the feedback in the soil-

vegetation-lower atmosphere will be investigated with the data assimilation framework.



• Early-career scientists, PhD and Master students are members of the team to contribute to

algorithm and model development, satellite data processing and analysis, and field campaigns.

• The education of young scientists in the field of remote sensing of agriculture to multiply their EO

expertise in their further career at different stakeholders.

4. Young scientists

• European side: Bagher Bayat, Jordan Steven Bates,

David Mengen, Wenqin Huang, Shirin Moradi,

Yuquan Qu, Rahul Raj, Visakh Sivaprasad, Xuerui Guo

• Chinese side: Wensong Liu, Lu Xu, Jiangguo Li,

Renmin Yang, Siyi Qiu, Yanyan Shi, Di Geng, Juan

Yan, Ting Huang, Jingjing Xu, Xin Liu, Peilin Yin



European Young scientists contributions in Dragon 5

Name Institution Poster title Contribution including period of research

Bagher Bayat Forschungszentrum
Juelich (IBG-3)

Agricultural Water Stress
Monitoring by MSG-SEVIRI
ET Observations Across
Europe: a Comprehensive
Accuracy Assessment and an
ESI-based Water Stress
Product

Remote sensing of water stress (2004-
2018)



Chinese Young scientists contributions in Dragon 5

Name Institution Poster title Contribution including period of 
research

LI Jinzhi JSNU Remote sensing monitoring and evaluation
of ecological environment of Guangyuan
City in Mountain-Basin Transition Zone

Remote sensing for ecological
and environmental monitoring,
especially for water quality

SHI Jin JSNU A remote sensing extraction method for 
garlic
distribution in Pizhou City using GEE cloud 
platform

Remote sensing for ecological 
and environmental monitoring, 
especially for plant type

SUN Chen JSNU Spatial-temporal variation analysis and 
prediction of carbon storage in urban 
ecosystems based on PLUS-InVEST model: 
A case study of Xuzhou

Remote sensing for ecological 
and environmental monitoring, 
especially for carbon storage 

WANG Qianjie JSNU Insights into the sustainability and driving 
mechanism of NPP of terrestrial vegetation 
in Africa 

Remote sensing for ecological 
and environmental monitoring, 
especially for carbon storage 



5. EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for 
no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert “ftp” 

ESA /Copernicus Missions No. 
Scenes

1. Sentinel-1 ~50

2. Sentinel-2 ~50

3.

4.

5.

6.

Total: ~100

Issues:

ESA Third Party Missions No. 
Scenes

1. PROBA-CHRIS ~10

2. MSG-SEVIRI ~10000

3. PlanetSCOPE ~20

4. ALOS-2 ~50

5.

6.

Total: 10K+

Issues:

Chinese EO data No. 
Scenes

1. GF series ~100

2.

3.

4.

5.

6.

Total: ~100

Issues:
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