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1. Introduction 3. Results
The intertidal zone is the coastal area, where the ocean meets the land
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multi-band and multi-polarization SAR data has been applied for the
classification of the intertidal zone in some research. Compared with
pre-defined features using traditional machine learning, the features
from data-driven deep learning models prove to be more robust, which
offers promise for building new data-driven models for sediments and
habitats classification on intertidal flats in SAR images. However, there is
still very little research reported on this task through literature search.

2. Objective and methodology

We propose a Texture-Enhanced UNet-based Network (TE-UNet) for R— — ﬂ
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enhanced; fine-grained classification.
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Fig. 1. Processing diagram for the TE-UNet.
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Fig. 5. Comparison of segmented maps obtained by different input channels.
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Fig. 2. lllustration of the overall architecture of TE-UNet. * Proper fusion mechanisms for multi-band and multi-polarization SAR data
* More polarimetric decomposition components
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